I have an interesting sequence whose properties I do not know yet(that is why I'm asking for your help). Define \(a_{1} = 1\) and \(a_{2} = 1\) for this sequence. From then on, \(a_{n}\) will be defined as \(a_{n-2} + a_{n-1}\) if \(n \equiv 3 \mod {4}\), \(a_{n-2} - a_{n-1}\) if \(n \equiv 0 \mod {4}\), \(a_{n-2} \times a_{n-1}\) if \(n \equiv 1 \mod {4}\), and \(a_{n-2} \div a_{n-1}\) if \(n \equiv 2 \mod {4}\). The first few terms of the sequence are \(1, 1, 2, -1, -2, \frac {1}{2}, -\frac {3}{2}, ...\). I haven't found much, but I've hypothesized that similar sequences(mixing up the order of adding, subtracting, multiplying, and dividing) will result in a finite sequence(stopping when a term is undefined) if and only if a 0 appears(the iff is important). Anyone want to find something about this?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Well, the sequence starting from 1,0,… defies your conjecture.
It is a recursive sequence with repeated segment [1,0,1,−1,−1]
Log in to reply
The sequence is defined with a2 as 1, but your sequence shows a2 as 0.
@Daniel Liu Your sequence has A2 as 0 but it is supposed to be 1
Log in to reply
I don't see why a2 can't be 0. The OP said a1=a2=1, but I can surely change that, can I? Or can I only mix up the definitions for how to find later terms?
Log in to reply