Should you ?

(a) I give you an envelope containing a certain amount of money, and you open it. I then put into a second envelope either twice this amount or half this amount, with a fifty-fifty chance of each. You are given the opportunity to trade envelopes. Should you?

(b) I put two sealed envelopes on a table. One contains twice as much money as the other. You pick an envelope and open it. You are then given the opportunity to trade envelopes. Should you?

Note by Harnakshvir Singh Dhillon
6 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

These are variations of the Two envelopes problem, which has received a surprising amount of analysis over the years. I posted a note on the subject several months ago, which can serve as an introduction to the supposed paradox.

Brian Charlesworth - 6 years, 3 months ago

The subject of your note is whit in the scope of Game Theory. The choice depend of the criteria of the gambler then if he choose to keep the envelope he will be playing under a maximin policy since he is guaranteed the best of the worst scenario. I would recommend a textbook on Game Theory you may find resources in the web

Mariano PerezdelaCruz - 6 years, 3 months ago

This reminds me of the Monty Hall problem which simply blew my mind the first time I learnt about it. For me, on both occasions, I would just choose randomly or based on the person's poker face because no new information came up to alter the probabilities. As far as I can see, there's equal probability for loss and gain at all times. So there's no advantage or disadvantage in switching or staying

Olawale Olayemi - 6 years, 3 months ago

Log in to reply

Yes, that's the most practical approach. If no useful information is provided, (and the information provided in version (a) is of no practical use), then there is no reason to switch. In the Monty Hall problem we are provided with useful information and thus have a logical reason to switch so as to improve our odds of winning. It is edifying though to look further into the two envelopes problem and see why certain seemingly convincing perspectives are flawed, (which I deal with (somewhat simplistically) in the note I've linked to in my previous comment). It's also interesting to consider the problem with more, (and even infinite), envelopes, with different multiples of money in each envelope.

Brian Charlesworth - 6 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...