I don't how to tackle with following problem:
Show there exists constant \(0<c<1 \) (depending on \(n\)) such that \( \sum_{i=1}^n x_i^3x_{i+1} \le c \sum_{i=1}^n x_i^4 \) is satisfied for arbirary reals where \( \sum_{i=1}^n x_i=0 \) and \( x_{n+1}=x_1 \).
I'll be grateful for help
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
What have you tried?
Are you familiar with Classical Inequalities? If yes, which do you think would be applicable?
For n=2, what do you think is the best value of c?
For n=3, what do you think is the best value of c?