Similar Figures

In mathematics, we say that two objects are similar if they have the same shape, but not necessarily the same size. This means that we can obtain one figure from the other through a process of expansion or contraction, possibly followed by translation, rotation or reflection. If the objects also have the same size, then they are congurent.

For a general shape, it can be tricky to show that two items are similar. We have to check all corresponding angles and ratios of side lengths before we can reach a conclusion. For example, a 1×2 1 \times 2 rectangle is not similar to a 2×3 2 \times 3 rectangle, even though they both have 4 right angles, since their side lengths have different ratios.

In the case of the triangle, we have slightly more information due to the Sine rule and Cosine Rule. We also have the methods SSS (side-side-side), SAS (side-angle-side), ASA (angle-side-angle), AAS (angle-angle-side) and AAA (angle-angle-angle), to prove two triangles are similar. Note that in comparison with congruent figures, side here refers to having the same ratio of side lengths. Also, note that method AAA is equivalent to AA, since the sum of angles in a triangle is equal to 180180^\circ.

The following result is immediate by expanding the formulas for perimeter and ratio:

If two figures F1F_1 and F2F_2 are similar with a corresponding side length ratio of RR, then the ratio of their perimeters is RR, and the ratio of their areas is R2R^2.

For a useful case of similar triangles, see Parallel Lines Property C.

Worked Examples

1. Show that all circles are similar to each other.

If we lay the circles over each other such that their centers coincide, then the expansion by factor R2R1 \frac{R_2} {R_1} (where R1 R_1 and R2R_2 are the radii of the two circles) maps the first circle to the second.

Note: In a similar fashion, we can show that all regular polygons with the same number of edges are similar to each other. Why doesn't this work for rectangles?

 

2. Prove that if 2 triangles have equal corresponding angles, then they are similar.

Let triangles ABCABC and DEFDEF have equal corresponding angles.

Translate DEFDEF such that A=DA= D .

Since BAC=EDF \angle BAC = \angle EDF, rotate DEFDEF about AA such that E E lies on ABAB and FF lies on ACAC.

Since ABC=DEF \angle ABC = \angle DEF, it follows that BCBC and EFEF are parallel, and hence we have a scaling map which brings ABCABC to DEFDEF. Thus these two triangles are similar.

 

3. Similar triangles T1T_1 and T2T_2 have perimeters of 100100 and 200200 respectively. If the area of T1T_1 is 200, what is the area of T2T_2?

Using the above result, the ratio of expansion between these triangles is R=200100=2 R = \frac{200}{100} = 2 . Hence, the ratio of their areas is R2=22=4R^2 = 2^2 = 4 , and thus the area of T2T_2 is 4×200=800 4 \times 200 = 800 .

#Geometry #SimilarFigures #KeyTechniques

Note by Arron Kau
7 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

May I know how to proof that any triangle can be cut into six similar triangles? Thanks. @Arron Kau

×

Problem Loading...

Note Loading...

Set Loading...