Sines

Prove that in any acute angled triangle ABCABC , we have sinAA+sinBB+sinCC>6π\large \frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C} > \frac{6}{\pi}

#Geometry

Note by Vilakshan Gupta
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

sinAa=sinBb=sinCc=12R(Law of sines)R is the radius of the circumcircle of the trianglesinAa+sinBb+sinCc=32RBy scaling the same triangle we can obtain R as large or small as needed.Thus there is no clear maximum or minimum for the given equation.\begin{aligned} \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} &=\frac{1}{2R}\hspace{5mm}\color{#3D99F6} \text{(Law of sines)}\\ \text{R is the radius of the circumcircle} &\text{ of the triangle} \\ \frac{\sin A}{a} + \frac{\sin B}{b} + \frac{\sin C}{c}&=\frac{3}{2R}\\\\ \text{By scaling the same triangle we can} &\text{ obtain R as large or small as needed.}\\ \text{Thus there is no clear maximum or} &\text{ minimum for the given equation.} \end{aligned}

are you sure the intended equation isn't

sinAA+sinBB+sinCC>6π\large \frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C}>\frac{6}{\pi} ?

Anirudh Sreekumar - 3 years, 6 months ago

Log in to reply

My Bad. Actually in denominator, there should be angles and not sides. Yes you are saying correct. Please help me with this,

Vilakshan Gupta - 3 years, 6 months ago

Log in to reply

Let,f(x)=sinxxx(0,π2]f(x)=xcosxsinxx2(1)Let,g(x)=xcosxsinxg(0)=0(2)g(x)=xsinx    g(x) is decreasing for x(0,π2](3)From (2) and (3) we have,g(x)<0 for x(0,π2](4)f(x)=g(x)x2    f(x)<0 for x(0,π2] from (4)    f(x)=sinxx is decreasing for x(0,π2](5)Since ΔABC is acute 0<A,B,C<π2From (5) we have,sinAA>sin(π2)π2    sinAA>2π(6)Similarly,sinBB>2π(7)sinCC>2π(8)(6)+(7)+(8) givessinAA+sinBB+sinCC>6π\begin{aligned}\text{Let,} f(x)&=\dfrac{\sin x}{x}\color{#3D99F6}\hspace{5mm} x\in\left({0,\dfrac{\pi}{2}}\right]\\ f'(x)&=\dfrac{x\cos x-\sin x}{x^2}\hspace{4mm}\color{#3D99F6}(1)\\\\ \text{Let,} g(x)&=x \cos x-\sin x\\ g(0)&=0\hspace{4mm}\color{#3D99F6}(2)\\ g'(x)&=-x\sin x\\ \implies g(x) &\text{ is decreasing for }x\in\left({0,\dfrac{\pi}{2}}\right] \hspace{4mm}\color{#3D99F6}(3)\\ \text{From } &\color{#3D99F6}(2)\color{#333333} \text{ and } \color{#3D99F6}(3)\color{#333333} \text{ we have,}\\ g(x)&<0 \text{ for }x\in\left({0,\dfrac{\pi}{2}}\right] \hspace{4mm}\color{#3D99F6}(4) \\ f'(x)&=\dfrac{g(x)}{x^2}\\ \implies f'(x)&<0 \text{ for }x\in\left({0,\dfrac{\pi}{2}}\right] \hspace{4mm}\color{#3D99F6}\text{ from }(4) \\ \implies f(x)&=\dfrac{\sin x}{x}\text{ is decreasing for }x\in\left({0,\dfrac{\pi}{2}}\right]\hspace{4mm}\color{#3D99F6}(5)\\\\ \text{Since }\Delta ABC \text{ is acute }\\ 0< \angle A,\angle B,\angle C<\dfrac{\pi}{2} \\ \text{From }\color{#3D99F6}(5) \color{#333333} \text{ we have,}\\ \dfrac{\sin A}{A}&>\dfrac{\sin (\dfrac{\pi}{2})}{\dfrac{\pi}{2}}\\ \implies\dfrac{\sin A}{A}&>\dfrac{2}{\pi}\hspace{4mm}\color{#3D99F6}(6)\\ \text{Similarly,}\\ \dfrac{\sin B}{B}&>\dfrac{2}{\pi}\hspace{4mm}\color{#3D99F6}(7)\\ \dfrac{\sin C}{C}&>\dfrac{2}{\pi}\hspace{4mm}\color{#3D99F6}(8)\\ \color{#3D99F6} (6)+(7)+(8) \text{ gives}\\ \dfrac{\sin A}{A}+\dfrac{\sin B}{B}+\dfrac{\sin C}{C}&>\dfrac{6}{\pi}\end{aligned}

Anirudh Sreekumar - 3 years, 6 months ago

Log in to reply

@Anirudh Sreekumar Thanks.

Vilakshan Gupta - 3 years, 6 months ago

Please help me anyone. @Chew-Seong Cheong , @Brian Charlesworth , @Jon Haussmann , @Anirudh Sreekumar , @Hosam Hajjir , @Pi Han Goh

Vilakshan Gupta - 3 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...