SMO 2013 Round 2 Q4

In the following 6×66 \times 6 array one can choose any k×kk \times k subarray with 1<k61<k \leq 6 and add 1 to all its entries. Is it possible to perform the operation a finite number of times so that all the entries in the array are multiples of 3? [201020020120102020010220111120000000] \begin{bmatrix} 2&0&1&0&2&0 \\ 0&2&0&1&2&0 \\ 1&0&2&0&2&0 \\ 0&1&0&2&2&0 \\ 1&1&1&1&2&0 \\ 0&0&0&0&0&0 \\ \end{bmatrix}

How to do this question? Please help. Thanks!

#NumberTheory

Note by Timothy Wan
5 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Hint: Find an Invariant. What property must stay the same after any change?

Calvin Lin Staff - 5 years, 6 months ago

Log in to reply

Update: My original idea failed to work.

I would be interested in a solution.

Calvin Lin Staff - 5 years, 6 months ago

No, because following this Invariant principle we know that we will always have three different numbers x, x + 1 and x + 2. Since the differences between the numbers is 1 and 2, and not 3, this is not possible!

A Former Brilliant Member - 5 years, 6 months ago

How about considering that we just need to make the whole array's elements 0 (mod 3), so we wrote 2 as -1? Well that help here? Sorry I'm not much of a helper :(

Timothy Wan - 5 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...