This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
For Problem 2:
Given that a and b are positive numbers, one can rewrite the inequality into 1/(a+b) is less than (a+b)/(ab). This implies that (a+b)^2 = a^2 + 2ab + b^2 > ab. Furthermore, a^2 + ab + b^2 > 0. Since a, b > 0, a^2 > 0, and b^2 > 0, thus, the inequality is true for positive integers.
For Problem 1:
a. Using the Vieta's theorem or the relationship between the coefficients of the quadratic equation, one can rewrite the equation as a + b = 1. Assuming a and b are roots of the quadratic equation x^2 - x + c = 0 where c = ab. We let a' and b" be the leading coefficient and coefficient of x respectively. By discriminants, in order to have a real solution, (b')^2-4(a')c must be greater or equal than to 0. By substitution, 1 - 4c must be greater than or equal to 0. Hence, c is less than or equal to 1/4 in which c = ab.
b. Using the implication in part a, squaring the equation a + b = 1 both sides, a^2 + 2ab + b^2 = 1. Since ab is less than or equal to 1/4, a^2 + b^2 + (1/2) is greater than or equal to 1, Hence, a^2 + b^2 is greater than or equal to 1/2.
Problem1 :a you have b^2-4ac >= 0 what are the values of a and b that you used to substitute with? It looks like you took a=1 and b=1 witch gives 1-4c but a+b=1 not 2.
Note: this problem is given to grade 10. discriminant is given in grade 11. So is there any other way to solve this problem?
Well, we substitute for a to get b(1−b)≤41⟹b2−b+41≥0. We find the vertex of the parabola; the x-value of the vertex is simply 2a−b=21. We plug this in the function to get (21)2−21+41≥0 which is indeed true. Since the parabola opens up, there will not ever be a point on the parabola with lower y-value than at the vertex; therefore there does not exist any numbers a,b with a=1−b such that ab>41.
Oh.. wait... I think I used wrong notations because I kept a and b as roots and at the same time the coefficients of the quadratic equation. Thanks for informing... I'll edit.. ASAP...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
For Problem 2: Given that a and b are positive numbers, one can rewrite the inequality into 1/(a+b) is less than (a+b)/(ab). This implies that (a+b)^2 = a^2 + 2ab + b^2 > ab. Furthermore, a^2 + ab + b^2 > 0. Since a, b > 0, a^2 > 0, and b^2 > 0, thus, the inequality is true for positive integers.
For Problem 1: a. Using the Vieta's theorem or the relationship between the coefficients of the quadratic equation, one can rewrite the equation as a + b = 1. Assuming a and b are roots of the quadratic equation x^2 - x + c = 0 where c = ab. We let a' and b" be the leading coefficient and coefficient of x respectively. By discriminants, in order to have a real solution, (b')^2-4(a')c must be greater or equal than to 0. By substitution, 1 - 4c must be greater than or equal to 0. Hence, c is less than or equal to 1/4 in which c = ab.
b. Using the implication in part a, squaring the equation a + b = 1 both sides, a^2 + 2ab + b^2 = 1. Since ab is less than or equal to 1/4, a^2 + b^2 + (1/2) is greater than or equal to 1, Hence, a^2 + b^2 is greater than or equal to 1/2.
Log in to reply
Problem1 :a you have b^2-4ac >= 0 what are the values of a and b that you used to substitute with? It looks like you took a=1 and b=1 witch gives 1-4c but a+b=1 not 2.
Note: this problem is given to grade 10. discriminant is given in grade 11. So is there any other way to solve this problem?
Log in to reply
Well, we substitute for a to get b(1−b)≤41⟹b2−b+41≥0. We find the vertex of the parabola; the x-value of the vertex is simply 2a−b=21. We plug this in the function to get (21)2−21+41≥0 which is indeed true. Since the parabola opens up, there will not ever be a point on the parabola with lower y-value than at the vertex; therefore there does not exist any numbers a,b with a=1−b such that ab>41.
Oh.. wait... I think I used wrong notations because I kept a and b as roots and at the same time the coefficients of the quadratic equation. Thanks for informing... I'll edit.. ASAP...