Solve the log problem.

log[(a+b)/3] = (log a + log b)/3, then a/b + b/a =

Note by Abhishek Mohapatra
8 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

How do we get the integer solutions ?????

Abhishek Mohapatra - 8 years, 1 month ago

it appears to be a very easy question......:) here is the probable solution....: log[(a+b)/3]=(log a+log b)/3
=>log[(a+b)/3]=log(ab)/3
=>3
log[(a+b)/3]=log(ab)
=>log[{(a+b)/3}^3]=log(a
b)...........taking antilog,....... =>[(a+b)^3]/[27]=ab
=>a^3+b^3+3
ab(a+b)=27ab
=>so the integer solutions are [a=2 & b=4] ; [a=4 &b=-16] ; [a=4 & b=2].....BUT YOU SEE "b" CAN NOT TAKE NEGATIVE VALUE INSIDE LOGARITHM.....SO THE SOLUTION SHOULD BE.....[a=2 & b=4] AND [a=4 & b=2].......................... HOPE THIS HELPS.........:))

Sayan Chaudhuri - 8 years, 1 month ago

Log in to reply

how did you directly deduce the integer solns from the step:=>a^3+b^3+3ab(a+b)=27ab

Bhargav Das - 8 years, 1 month ago

Log in to reply

ha ha....!! ...i thought if anyone asks me that step by step solution.....i would crumble....!!!.....then to find the solution of a^3+b^3+3ab(a+b)=27ab i only put my graphing knowledge.........BUT EASY TO SAY YOU MAY FIND THE SOLUTION WITHOUT APPLYING YOUR BRAIN EVEN BY CLICKING HERE SIMPLY.......i only used this website to check my answer whether it is right or wrong......:-)

Sayan Chaudhuri - 8 years, 1 month ago

How do we get the integer solutions ?????

Abhishek Mohapatra - 8 years, 1 month ago
×

Problem Loading...

Note Loading...

Set Loading...