Solve this limit problem

Please prove this limit problem and please solve it step by step...Thanks in advance...

#HelpMe! #MathProblem #Math

Note by Sayan Chaudhuri
7 years, 8 months ago

No vote yet
2 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

The trick is to state (1+x)1x \large (1 + x)^{ \frac {1}{x}} in terms of its Maclaurin Series (up to quadratic powers, because the denominator is a quadratic power as well).

Recall that the Maclaurin Series of f(x)f(x) is k=0fk(0)k!xk \displaystyle \sum_{k=0}^\infty \frac { f^{k} (0) }{k!} x^k , where fk(0) f^{k} (0) denote the kth k^{th} derivative of f(x)f(x) at x=0x=0, with that we get ln(1+x)=xx22+x33x44+ \ln (1 + x) = x - \frac {x^2}{2} + \frac {x^3}{3} - \frac {x^4}{4} + \ldots . And apply the quotient rule: if f(x)=u(x)v(x) f(x) = \frac {u(x)}{v(x)} , then f(x)=v(x)u(x)u(x)v(x)[v(x)]2 \large f'(x) = \frac {v(x) u'(x) - u(x) v'(x) }{ [v(x)]^2}

Then for small xx, ln(1+x)xx22+x33 \ln (1+x) \approx x - \frac {x^2}{2} + \frac {x^3}{3} , () (*)

Let f(x)=(1+x)1x \large f(x) = (1 + x)^{\frac {1}{x}} , we get f(0)=limx0(1+x)1x=e f(0) = \displaystyle \lim_{x \to 0} (1 + x)^{\frac {1}{x}} = e

lnf(x)=ln(1+x)x \large \Rightarrow \ln f(x) = \frac {\ln (1+x) }{x}

f(x)f(x)=x1+xln(1+x)x2=x(1+x) ln(1+x)x2(1+x) \large \Rightarrow \frac { f'(x) }{f(x)} = \frac { \frac {x}{1+x} - \ln (1+x) }{x^2} = \frac {x - (1+x) \space \ln (1+x) }{ x^2 (1 + x) }

For small xx, substitute () (*)

f(x)f(x)=x(1+x) (xx22+x33)x2(1+x) \large \Rightarrow \LARGE \frac { f'(x) }{f(x)} = \frac {x - (1+x) \space (x - \frac {x^2}{2} + \frac {x^3}{3} ) }{ x^2 (1 + x) }

f(x)f(x)=2x2+x36x+6 \large \Rightarrow \LARGE \frac { f'(x) }{f(x)} = \frac {-2x^2 + x - 3} {6x+6} , () (**)

f(0)=f(0)36=e2 \large \Rightarrow f'(0) = f(0) \cdot \frac {-3}{6} = -\frac {e}{2} , () (***)

Differentiate () (**) :

f(x)f(x)[f(x)]2[f(x)]2=x2+2x23x2+6x+3 \large \frac { f(x) f''(x) - [ f'(x) ]^2 }{ [ f(x) ]^2 } = - \frac {x^2 + 2x - 2}{3x^2 + 6x + 3 }

f(0)f(0)[f(0)]2[f(0)]2=23 \large \Rightarrow \frac { f(0) f''(0) - [ f'(0) ]^2 }{ [ f(0) ]^2 } = \frac {2}{3}

ef(0)[e2]2e2=23 \LARGE\Rightarrow \frac { e \cdot f''(0) - [ - \frac {e}{2} ]^2 }{ e^2 } = \frac {2}{3}

f(0)=11e12 \large \Rightarrow f''(0) = \frac {11e}{12} , () (****)

Therefore, for small xx, (1+x)1x=f(x)=k=0fk(0)k!xk \large (1 + x)^{ \frac {1}{x} } = f(x) = \displaystyle \sum_{k=0}^\infty \frac { f^{k} (0) }{k!} x^k

(1+x)1x=eex2+11ex224+O(x3) \large \Rightarrow (1 + x)^{ \frac {1}{x} } = e - \frac {ex}{2} + \frac {11ex^2}{24} + O(x^3)

Now we can evaluate the limit

limx0(1+x)1xe+ex2x2 \large \displaystyle \lim_{x \to 0} \frac { (1+x)^{\frac {1}{x} } - e + \frac {ex}{2} } {x^2}

=limx02(1+x)1x2e+ex2x2 \large = \displaystyle \lim_{x \to 0} \frac { 2(1+x)^{\frac {1}{x} } - 2e + ex } {2x^2}

=limx02(eex2+11ex224+O(x3))2e+ex2x2 \large = \displaystyle \lim_{x \to 0} \frac { 2(e - \frac {ex}{2} + \frac {11ex^2}{24} + O(x^3) ) - 2e + ex } {2x^2}

=limx011ex212+O(x3)2x2 \large = \displaystyle \lim_{x \to 0} \frac { \frac { 11ex^2}{12} + O(x^3) } {2x^2}

=limx011e12+O(x)2 \large = \displaystyle \lim_{x \to 0} \frac { \frac { 11e}{12} + O(x) } {2}

=11e24 \large = \frac {11e}{24}

Pi Han Goh - 7 years, 8 months ago

Log in to reply

Amazing! Great job Pi Han!

Pranav Arora - 7 years, 8 months ago

How you format these equations in solutions? Can we use latex?

indulal gopal - 7 years, 8 months ago

Thanks you a lot...Great job it is....U r seemingly the master hand of limit problems...Thanks.

Sayan Chaudhuri - 7 years, 8 months ago

Here is another method :

limx0(1+x)1xe+ex2x2\displaystyle \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}} - e + \frac{ex}{2}}{x^2}

= limx0eln(1+x)xe+ex2x2\displaystyle \lim_{x \to 0} \frac{e^{\frac{ln(1 + x)}{x}} - e + \frac{ex}{2}}{x^2}

= limx0e(eln(1+x)x11+x2)x2\displaystyle \lim_{x \to 0} \frac{e \Big(e^{\frac{ln(1 + x)}{x} - 1} - 1 + \frac{x}{2} \Big)}{x^2}

= limx0e(e(xx22+x33)x11+x2)x2\displaystyle \lim_{x \to 0} \frac{e \Big(e^{\frac{\big(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \big)}{x} - 1} - 1 + \frac{x}{2} \Big)}{x^2}

= limx0e(e(x2+x23)1+x2)x2\displaystyle \lim_{x \to 0} \frac{e \Big(e^{(-\frac{x}{2} + \frac{x^2}{3} - \dots )} - 1 + \frac{x}{2} \Big)}{x^2}

= limx0e(1+(x2+x23)+(x2+x23)22+1+x2)x2\displaystyle \lim_{x \to 0} \frac{e \Big( 1 + (-\frac{x}{2} + \frac{x^2}{3} - \dots ) + \frac{{(-\frac{x}{2} + \frac{x^2}{3} - \dots )}^2}{2} + \dots - 1 + \frac{x}{2} \Big)}{x^2}

limx0e(x23+x28+)x2\displaystyle \lim_{x \to 0} \frac{e(\frac{x^2}{3} + \frac{x^2}{8} + \dots)}{x^2} = 11e24\boxed{\frac{11e}{24}}

jatin yadav - 7 years, 8 months ago

write (1+x)^(1/x)=e^(1/x)log(1+x) and expand carefully by neglecting all the terms greater than x^2, you can get it

Ravi Teja - 7 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...