some help please:

i need to solve this problem in ten ways: prove that the following points in R^3 ,are collinear ,i.e,they are located on a straight line : A=(2,1,4), B=(1,-1,2), C =(3,3,6).

#HelpMe!

Note by Aisha Adham
7 years, 6 months ago

No vote yet
2 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

actually i don't agree with you Mr/ jatin yadav, because doctor gave us seven ways to solve it and i still need three ways to complete ten :( .

Aisha Adham - 7 years, 6 months ago

OK , Mr/ Calvin Lin i know 7 ways or 8, and they are : 1-Length's method 2-Cross product method 3-Box product 4-Slope method 5-Rank method 6-Buchhate formula 7-shoelace method (surerya's method) :) 8-reduce shoelace method .( but it is just abridgment to number (8)). and that is what i know ......

Aisha Adham - 7 years, 6 months ago

Log in to reply

Here's another method. Show that AA is the midpoint of line segment BCBC.

Calvin Lin Staff - 7 years, 6 months ago

What have you tried?

Since you want 10 ways, how many have you already come up with? If you list them out, others will be more likely to chime in with different approaches that they have used.

Calvin Lin Staff - 7 years, 6 months ago

I believe that there can not exist 1010 ways for this one, and i can think of only 1, i.e. equating the direction cosines of the line segments.

jatin yadav - 7 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...