Square Of A One Degree Polynomial With Integer Coefficients

Suppose that f(x)f(x) is a quadratic real polynomial. If for any positive integer nn, f(n)f(n) is a square of an integer, prove that f(x)f(x) is a square of a one degree polynomial with integer coefficients.

#NumberTheory #VictorLoh

Note by Victor Loh
6 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Consider the quadratic function in vertex form: f(x) = a(x-h)^2 + k. We express this as a perfect square: a(x - h)^2 + k = m^2.

k can be expressed as: m^2 - a(x - h)^2 = k.

Now, this is one Pell-type equation.

Case 1: If a is not a perfect square and k is not equal to 0. Consider the behavior of a Pell-type equation where the solutions are exponentially increasing which implies that the domain is not all positive integers for its range to become a perfect square.

Case 2: If a is not a perfect square and has norm 0. m cannot be integral due to the irrational number a.

(Let a = n^2 for cases 3 and 4.) Case 3: If a is a perfect square and k has norm not equal to 0. k = (m - n(x-h))(m + n(x-h)) In order for m, x, h, and n be all integral, the main factors must be equated to the factors of k but its factors are finite so it cannot be guaranteed that its domain is all positive integers.

Case 4: If a is a perfect square and k has norm equal to 0. m = n(x - h) m = -n(x - h)

Exhausting all cases, case 4 satisfies the conditions. Hence, f(x) is a linear degree polynomial with integer coefficients.

John Ashley Capellan - 6 years, 10 months ago

Log in to reply

Please check...

John Ashley Capellan - 6 years, 10 months ago

The problem says that it's a real quadratic functions, so the coefficients could be any real number, but you use Pell's equation, which depends on them being integers.

Bogdan Simeonov - 6 years, 2 months ago

WELL, LET POLYNOMIAL BE ax^2+bx+c THEN c IS A QUADRATIC RESIDUE FOR EVERY NATURAL VALUE OF x HENCE c IS A PERFECT SQUARE. LET c BE m^2 THEN f(x) =ax^2+bx+m^2 Now IT CAN BE SEEN THAT b IS A MULTIPLE OF EVERY PRIME FACTOR OF m

I KNOW THIS IS NOT A COMPLETE SOLUTION BUT I BELIEVE IT WILL HELP

A Former Brilliant Member - 6 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...