Squares = Cubes?

12+22+32+42+52+62=33+43=91.1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 3^3 + 4^3 = 91.

Are there any other (non-trivial) sets of consecutive squares and cubes whose sums are equal?

#NumberTheory

Note by Eli Ross
3 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

If we stipulate that both sides have to have at least two terms, then I get some solutions: 62++542=203++24372++122=63+7382++572=83++223112++152=73+83142++542=63++213152++912=303++363202++302=93++133222++942=313++373222++962=173++333272++592=13++223 \begin{aligned} 6^2 + \cdots + 54^2 &= 20^3 + \cdots + 24^3 \\ 7^2 + \cdots + 12^2 &= 6^3 + 7^3 \\ 8^2 + \cdots + 57^2 &= 8^3 + \cdots + 22^3 \\ 11^2 + \cdots + 15^2 &= 7^3 + 8^3 \\ 14^2 + \cdots + 54^2 &= 6^3 + \cdots + 21^3 \\ 15^2 + \cdots + 91^2 &= 30^3 + \cdots + 36^3 \\ 20^2 + \cdots + 30^2 &= 9^3 + \cdots + 13^3 \\ 22^2 + \cdots + 94^2 &= 31^3 + \cdots + 37^3 \\ 22^2 + \cdots + 96^2 &= 17^3 + \cdots + 33^3 \\ 27^2 + \cdots + 59^2 &= 1^3 + \cdots + 22^3 \\ \end{aligned} And there are lots more.

Patrick Corn - 3 years, 7 months ago

Log in to reply

How u got these?

Md Zuhair - 3 years, 6 months ago

Log in to reply

By a (very unsophisticated) search for positive integer solutions to the polynomial equation x(x+1)(2x+1)6y(y+1)(2y+1)6=z2(z+1)24w2(w+1)24, \frac{x(x+1)(2x+1)}6 - \frac{y(y+1)(2y+1)}6 = \frac{z^2(z+1)^2}4 - \frac{w^2(w+1)^2}4, where I throw out solutions with xy1x-y \le 1 or zw1.z-w \le 1.

Patrick Corn - 3 years, 6 months ago

Log in to reply

@Patrick Corn Woah!! :P

Md Zuhair - 3 years, 6 months ago

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 22 16:41:38 2017

@author: Michael Fitzgerald
"""

def build_dict(n, s, sum_x):
    for i in range(max_, 1,-1):
        for j in range(min_, i):
            for k in range(j,i+1):
                if i <= j:
                    break
                if j != k:
                    key_ = '%d-%d' % (j, k)
                else:
                    key_ = '%d' % k
                s += k**n
                sum_x[key_] = s
            s = 0
    return sum_x

min_ = 1   #Enter min of range
max_ = 300   #Enter max of range

sum_sq = {}
sum_ = 0
sum_sq = build_dict(2,sum_, sum_sq)

sum_cube = {}
sum_ = 0
sum_cube = build_dict(3, sum_, sum_cube)

#print sum_cube

matching = [[sum_sq[a],a, b] for a in sum_sq for b in sum_cube if sum_sq[a] == sum_cube[b]]
sorted_list = sorted(matching, key = lambda x: x[0])
for i in sorted_list:
    print 'Sum: %d; Squares range: %s; Cubes range: %s' %  (i[0], i[1], i[2])   

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
Sum: 1; Squares range: 1; Cubes range: 1
Sum: 9; Squares range: 3; Cubes range: 1-2
Sum: 36; Squares range: 6; Cubes range: 1-3
Sum: 64; Squares range: 8; Cubes range: 4
Sum: 91; Squares range: 1-6; Cubes range: 3-4
Sum: 100; Squares range: 10; Cubes range: 1-4
Sum: 225; Squares range: 15; Cubes range: 1-5
Sum: 441; Squares range: 21; Cubes range: 1-6
Sum: 559; Squares range: 7-12; Cubes range: 6-7
Sum: 729; Squares range: 27; Cubes range: 9
Sum: 784; Squares range: 28; Cubes range: 1-7
Sum: 855; Squares range: 11-15; Cubes range: 7-8
Sum: 1296; Squares range: 36; Cubes range: 1-8
Sum: 2025; Squares range: 45; Cubes range: 1-9
Sum: 3025; Squares range: 55; Cubes range: 1-10
Sum: 4096; Squares range: 64; Cubes range: 16
Sum: 4356; Squares range: 66; Cubes range: 1-11
Sum: 6084; Squares range: 78; Cubes range: 1-12
Sum: 6985; Squares range: 20-30; Cubes range: 9-13
Sum: 8281; Squares range: 91; Cubes range: 1-13
Sum: 11025; Squares range: 105; Cubes range: 1-14
Sum: 14400; Squares range: 120; Cubes range: 1-15
Sum: 15625; Squares range: 125; Cubes range: 25
Sum: 18496; Squares range: 136; Cubes range: 1-16
Sum: 23409; Squares range: 153; Cubes range: 1-17
Sum: 29240; Squares range: 35-50; Cubes range: 2-18
Sum: 29241; Squares range: 171; Cubes range: 1-18
Sum: 36100; Squares range: 190; Cubes range: 1-19
Sum: 41616; Squares range: 204; Cubes range: 23-25
Sum: 44100; Squares range: 210; Cubes range: 1-20
Sum: 46656; Squares range: 216; Cubes range: 36
Sum: 47025; Squares range: 28-54; Cubes range: 24-26
Sum: 53136; Squares range: 14-54; Cubes range: 6-21
Sum: 53361; Squares range: 231; Cubes range: 1-21
Sum: 53900; Squares range: 6-54; Cubes range: 20-24
Sum: 63225; Squares range: 8-57; Cubes range: 8-22
Sum: 64009; Squares range: 253; Cubes range: 1-22
Sum: 64009; Squares range: 27-59; Cubes range: 1-22
Sum: 76175; Squares range: 48-69; Cubes range: 2-23
Sum: 76176; Squares range: 276; Cubes range: 1-23
Sum: 89559; Squares range: 38-68; Cubes range: 7-24
Sum: 89559; Squares range: 38-68; Cubes range: 30-32
Sum: 103823; Squares range: 22-68; Cubes range: 47
Sum: 108801; Squares range: 50-76; Cubes range: 16-26
Sum: 186200; Squares range: 36-84; Cubes range: 11-29
Sum: 186200; Squares range: 74-98; Cubes range: 11-29
Sum: 245575; Squares range: 48-94; Cubes range: 7-31
Sum: 246015; Squares range: 126-139; Cubes range: 2-31
Sum: 254331; Squares range: 15-91; Cubes range: 30-36
Sum: 274625; Squares range: 90-115; Cubes range: 65
Sum: 277984; Squares range: 22-94; Cubes range: 31-37
Sum: 296225; Squares range: 22-96; Cubes range: 17-33
Sum: 300321; Squares range: 53-101; Cubes range: 16-33
Sum: 339625; Squares range: 85-117; Cubes range: 16-34
Sum: 404209; Squares range: 52-110; Cubes range: 25-37
Sum: 461384; Squares range: 72-120; Cubes range: 35-42
Sum: 485199; Squares range: 67-120; Cubes range: 27-39
Sum: 643159; Squares range: 7-124; Cubes range: 19-40
Sum: 741320; Squares range: 100-147; Cubes range: 2-41
Sum: 750519; Squares range: 225-238; Cubes range: 62-64
Sum: 810216; Squares range: 14-134; Cubes range: 43-50
Sum: 815309; Squares range: 77-142; Cubes range: 5-42
Sum: 825209; Squares range: 105-153; Cubes range: 32-45
Sum: 841555; Squares range: 27-136; Cubes range: 22-43
Sum: 890560; Squares range: 148-180; Cubes range: 12-43
Sum: 1036664; Squares range: 247-262; Cubes range: 47-54
Sum: 1083475; Squares range: 150-187; Cubes range: 43-52
Sum: 1092385; Squares range: 106-164; Cubes range: 24-46
Sum: 1382975; Squares range: 148-194; Cubes range: 2-48
Sum: 1424124; Squares range: 27-162; Cubes range: 77-79
Sum: 1442609; Squares range: 147-195; Cubes range: 56-62
Sum: 1494541; Squares range: 104-177; Cubes range: 13-49
Sum: 1739780; Squares range: 46-174; Cubes range: 17-51
Sum: 1752309; Squares range: 247-272; Cubes range: 45-57
Sum: 1779184; Squares range: 216-248; Cubes range: 57-64
Sum: 1801745; Squares range: 6-175; Cubes range: 32-53
Sum: 1831536; Squares range: 16-176; Cubes range: 31-53
Sum: 1854784; Squares range: 122-194; Cubes range: 21-52
Sum: 1926441; Squares range: 254-280; Cubes range: 33-54
Sum: 2030301; Squares range: 140-206; Cubes range: 100-101
Sum: 2197160; Squares range: 190-237; Cubes range: 74-78
Sum: 2906541; Squares range: 91-211; Cubes range: 76-81
Sum: 3102884; Squares range: 27-210; Cubes range: 32-60
Sum: 3328641; Squares range: 55-216; Cubes range: 48-65
Sum: 3374225; Squares range: 174-248; Cubes range: 65-74
Sum: 3455955; Squares range: 226-279; Cubes range: 54-68
Sum: 3770585; Squares range: 15-224; Cubes range: 89-93
Sum: 3848031; Squares range: 154-247; Cubes range: 31-63
Sum: 4063815; Squares range: 158-252; Cubes range: 7-63
Sum: 4073949; Squares range: 236-293; Cubes range: 52-69
Sum: 4329369; Squares range: 137-249; Cubes range: 112-114
Sum: 4837456; Squares range: 78-246; Cubes range: 81-88
Sum: 5110784; Squares range: 92-252; Cubes range: 107-110
Sum: 5149691; Squares range: 44-249; Cubes range: 35-68
Sum: 5184720; Squares range: 185-279; Cubes range: 119-121
Sum: 5338880; Squares range: 136-264; Cubes range: 29-68
Sum: 5370400; Squares range: 126-262; Cubes range: 84-91
Sum: 5492691; Squares range: 209-294; Cubes range: 15-68
Sum: 5813729; Squares range: 145-273; Cubes range: 17-69
Sum: 6175000; Squares range: 58-265; Cubes range: 6-70
Sum: 6953939; Squares range: 107-280; Cubes range: 47-75 

Michael Fitzgerald - 3 years, 6 months ago

Log in to reply

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Sum: 1; Squares range: 1; Tesseract (^4) range: 1
Sum: 16; Squares range: 4; Tesseract (^4) range: 2
Sum: 81; Squares range: 9; Tesseract (^4) range: 3
Sum: 256; Squares range: 16; Tesseract (^4) range: 4
Sum: 625; Squares range: 25; Tesseract (^4) range: 5
Sum: 1296; Squares range: 36; Tesseract (^4) range: 6
Sum: 2401; Squares range: 49; Tesseract (^4) range: 7
Sum: 4096; Squares range: 64; Tesseract (^4) range: 8
Sum: 6561; Squares range: 81; Tesseract (^4) range: 9
Sum: 10000; Squares range: 100; Tesseract (^4) range: 10
Sum: 14641; Squares range: 121; Tesseract (^4) range: 11
Sum: 20736; Squares range: 144; Tesseract (^4) range: 12
Sum: 24979; Squares range: 62-67; Tesseract (^4) range: 5-10
Sum: 28561; Squares range: 119-120; Tesseract (^4) range: 13
Sum: 28561; Squares range: 169; Tesseract (^4) range: 13
Sum: 38416; Squares range: 196; Tesseract (^4) range: 14
Sum: 50625; Squares range: 225; Tesseract (^4) range: 15
Sum: 59731; Squares range: 11-56; Tesseract (^4) range: 6-12
Sum: 65536; Squares range: 256; Tesseract (^4) range: 16
Sum: 83521; Squares range: 289; Tesseract (^4) range: 17
Sum: 218515; Squares range: 34-88; Tesseract (^4) range: 11-16
Sum: 562666; Squares range: 79-129; Tesseract (^4) range: 1-19
Sum: 562666; Squares range: 163-181; Tesseract (^4) range: 1-19
Sum: 722665; Squares range: 16-129; Tesseract (^4) range: 2-20
Sum: 907555; Squares range: 56-142; Tesseract (^4) range: 17-22
Sum: 1590979; Squares range: 163-208; Tesseract (^4) range: 20-25
Sum: 2153291; Squares range: 155-216; Tesseract (^4) range: 5-25

Michael Fitzgerald - 3 years, 6 months ago

The difference of the squares of two consecutive triangular numbers will be a perfect cube whose cube root is equal to the difference between those triangular numbers. So, 3^3 + 4^3 = (6^2 - 3^2) + (10^2 - 6^2) = 91 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2. Or generalized, the sum of the cubes of two consecutive numbers is obtained; (L-M)^3 + [(L-M)+1]^3 = (L^2 - M^2) + (N^2 - O^2) where n-o = [(L-M)+1] and (N-O)-1 = L-M. Does that help at all?

Hiro Rumpf - 3 years, 6 months ago

Sowmya Surapaneni - 3 years, 5 months ago

I'm curious about these things, but are they coincidental or are there deeper algebraic reasons for this? Say rooted in abstract algebra or number theoretical grounds? For example, Fermat's Last Theorem looked simple when stated, but the proof required techniques deemed not available during Fermat's time, but somehow involved elliptic curves and such things rooted in abstract algebra.

Max Yuen - 2 years, 1 month ago
×

Problem Loading...

Note Loading...

Set Loading...