\[\begin{aligned} \sigma^2 &\overset{\text{def}}{=}\frac{\sum f\left(x-\overline{x}\right)^2}{\sum f}\\ &=\frac{1}{\sum f}\sum f\left(x-\frac{\sum fx}{\sum f}\right)^2\\ &=\frac{1}{\sum f}\sum f\left[x^2-2x\left(\frac{\sum fx}{\sum f}\right)+\left(\frac{\sum fx}{\sum f}\right)^2\right]\\ &=\frac{1}{\sum f}\left[\sum fx^2-\sum2fx\left(\frac{\sum fx}{\sum f}\right)+\sum f\left(\frac{\sum fx}{\sum f}\right)^2\right]\\ &=\frac{\sum fx^2}{\sum f}-2\left(\frac{\sum fx}{\sum f}\right)\left(\frac{\sum fx}{\sum f}\right)+\frac{\sum f}{\sum f}\left(\frac{\sum fx}{\sum f}\right)^2\\ &=\frac{\sum fx^2}{\sum f}-2\left(\frac{\sum fx}{\sum f}\right)^2+\left(\frac{\sum fx}{\sum f}\right)^2\\ \sigma^2 &=\frac{\sum fx^2}{\sum f}-\left(\frac{\sum fx}{\sum f}\right)^2\\ \sigma&=\boxed{\sqrt{\frac{\sum fx^2}{\sum f}-\left(\frac{\sum fx}{\sum f}\right)^2}} \end{aligned}\]
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.