I just encountered the stars and bars technique page on Brilliant. https://brilliant.org/assessment/techniques-trainer/stars-and-bars/
The example problem asks How many ordered sets of non-negative integers are there such that
I was wondering, If an upper limit is placed on one or two of the variables, for example if and , then how will the solution change?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
is there a general way to do it
Okay brother the solution is simple First find the no of solutions without any restriction Now you have to subtract 3 cases, Case 1 When a =5 then the solve b+c+d=5; Case 2 When b=4; Case 3 When both a and b are at their maximas.; Subtract these cases from your solution. PS- case 3 is not valid in this case.