This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Let's assume that perpendiculars can be drawn to any segment using a straightedge only. Given a circle, it becomes a trivial matter in locating the center of that circle, by first drawing two arbitrary chords, and then finding the midpoints of the chords (which is possible using a straightedge only and not using the circle), and then drawing the perpendiculars through them. But this is an impossibility as per Jacob Steiner's Theorem. Hence construction of a perpendicular to any line segment using a straightedge only is an impossibility.
However, by cheating, using a double edged straightedge, such as a common ruler, one can easily draw a rhombus, which diagonals are perpendicular.
As a note, given a line segment and any point not on it, a line through this point and parallel to the line segment can be constructed using a straightedge only. Unfortunately, one still cannot construct a true rhombus with this means alone.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let's assume that perpendiculars can be drawn to any segment using a straightedge only. Given a circle, it becomes a trivial matter in locating the center of that circle, by first drawing two arbitrary chords, and then finding the midpoints of the chords (which is possible using a straightedge only and not using the circle), and then drawing the perpendiculars through them. But this is an impossibility as per Jacob Steiner's Theorem. Hence construction of a perpendicular to any line segment using a straightedge only is an impossibility.
However, by cheating, using a double edged straightedge, such as a common ruler, one can easily draw a rhombus, which diagonals are perpendicular.
As a note, given a line segment and any point not on it, a line through this point and parallel to the line segment can be constructed using a straightedge only. Unfortunately, one still cannot construct a true rhombus with this means alone.