Struggling to prove this

(1x)(1x2)(1x3)=n=(1)nxn(3n+1)/2\Large (1-x)(1-x^2)(1-x^3) \cdots = \sum_{n=-\infty}^\infty (-1)^n x^{n(3n+1)/2}

Anyone have a proof of this?

#Algebra

Note by Hamza A
5 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

This is the famous Euler's Pentagonal Number Theorem, and while there are many published proofs of it, none of them are short and easy. However, this one is not bad.

Pentagonal Number Theorem

As might be expected, this is related to the partition function, since we are looking at how many of the products of powers of xx cancel each other out.

Euler took something like 10 years to solve this one, so don't feel bad if you can't figure it out right away or anytime soon.

Michael Mendrin - 5 years, 4 months ago

Log in to reply

thanks!

ive read it in anintroductiontothetheoryofnumbersan\quad introduction\quad to\quad the\quad theory\quad of\quad numbers\quad by hardy and i was lost (he`s awesome)

Hamza A - 5 years, 4 months ago

Log in to reply

I see it now on page 264 of Hardy's book. It does contain an "elementary proof due to Franklin" which runs about a page or so explaining how those terms cancel out, except for the pentagonal number powers.

Michael Mendrin - 5 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...