Such Large Proof?

PROVE THAT

\(\displaystyle\int_{0}^{\pi}\)\(\ln\)\((a\pm(b.cos(x)\)))\(dx\)=\(-\)\(\pi\)\(\ln\)\(\dfrac{a+\sqrt{a^{2}-b^{2}}}{2}\)

For aa\geb

#Calculus #Doubts

Note by Parth Lohomi
6 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

It seems that I have got a different answer:

Let f(z)=0πln(a±zcosx)dx\displaystyle f(z)=\int_0^{\pi} \ln (a\pm z\cos x) dx , Where we seek f(b)f(b) and we have f(0)=πlnaf(0) = \pi ln a

f(z)=0π±cosx(a±zcosx)dx\displaystyle f'(z) = \int_0^{\pi} \frac{\pm \cos x}{(a\pm z\cos x)} dx

=0πaz±cosxaz(a±zcosx)dx=0πdxzaz0πdxa±zcosx\displaystyle = \int_0^{\pi} \frac{\frac{a}{z} \pm \cos x -\frac{a}{z}}{(a\pm z\cos x)} dx = \int_0^{\pi} \frac{dx}{z} -\frac{a}{z} \int_0^{\pi} \frac{dx}{a\pm z\cos x}

=πzaz0πdxa±zcosx\displaystyle =\frac{\pi}{z} -\frac{a}{z} \int_0^{\pi} \frac{dx}{a\pm z\cos x}

Now working on the integral alone:

0πdxa±zcosx=20π2dxa±zcos2x(x2x)\displaystyle \int_0^{\pi} \frac{dx}{a\pm z\cos x} =2 \int_0^{\frac{\pi}{2}} \frac{dx}{a\pm z\cos 2x} {\color{#3D99F6}{(x\to 2x)}}

=20π2dxa±zcos2xzsin2x\displaystyle = 2 \int_0^{\frac{\pi}{2}} \frac{dx}{a\pm z\cos^2x \mp z\sin^2x}

=20π2sec2xdxasec2x±zztan2x=20dxa(1+x2)±zzx2(tanxx)\displaystyle = 2 \int_0^{\frac{\pi}{2}} \frac{\sec^2xdx}{a\sec^2x\pm z \mp z\tan^2x} = 2 \int_0^{\infty} \frac{dx}{a(1+x^2)\pm z \mp zx^2} {\color{#3D99F6}{(\tan x\to x)}}

=20dx(az)x2+a±z=2a±z0dx(az)a±zx2+1\displaystyle = 2 \int_0^{\infty} \frac{dx}{(a\mp z)x^2 +a\pm z }=\frac{2}{a\pm z} \int_0^{\infty} \frac{dx}{\frac{(a\mp z)}{a\pm z}x^2 +1 }

2a±z1(az)a±z0dx1+x2((az)a±zxx)\displaystyle \frac{2}{a\pm z} \frac{1}{\sqrt{\frac{(a\mp z)}{a\pm z}}} \int_0^{\infty} \frac{dx}{1+x^2} {\color{#3D99F6}{(\sqrt{\frac{(a\mp z)}{a\pm z}} x \to x)}}

Simplifying and using (a±z)(az)=a2z2 (a\pm z)(a\mp z) = a^2-z^2 , we get:

0πdxa±zcosx=πa2z2\displaystyle \int_0^{\pi} \frac{dx}{a\pm z\cos x} = \frac{\pi}{\sqrt{a^2-z^2}}

Now going back:

f(z)=πzaz0πdxa±zcosx=πzazπa2z2\displaystyle f'(z) = \frac{\pi}{z} -\frac{a}{z} \int_0^{\pi} \frac{dx}{a\pm z\cos x} = \frac{\pi}{z} -\frac{a}{z} \frac{\pi}{\sqrt{a^2-z^2}}

Now integrating back:

f(b)=f(b)f(0)+f(0)=0bf(z)dz+πlna=0bπdzz0baπdzza2z2+πlna\displaystyle f(b) = f(b) -f(0) +f(0) = \int_0^b f'(z) dz + \pi \ln a = \int_0^b \frac{\pi dz}{z} -\int_0^b \frac{a\pi dz}{z\sqrt{a^2-z^2}} +\pi \ln a

=πlnbπlimx0lnx+πlnalimx0xbaπdzza2z2\displaystyle = \pi \ln b - \pi \lim_{x\to 0} \ln x +\pi \ln a -\lim_{x\to 0}\int_x^b \frac{a\pi dz}{z\sqrt{a^2-z^2}}

Working the integral alone:

xbaπdzza2z2=πarcsinxaarcsinbacsczdz(zasinz)\displaystyle \int_x^b \frac{a\pi dz}{z\sqrt{a^2-z^2}} = \pi \int_{\arcsin \frac{x}{a}}^{\arcsin \frac{b}{a}} \csc z dz {\color{#3D99F6}{(z \to a\sin z )}}

Now evaluating this integral will give :

=πln(a2x2+ax)πln(a2b2+ab)\displaystyle = \pi \ln( \frac{\sqrt{a^2-x^2} +a }{x}) - \pi \ln( \frac{\sqrt{a^2-b^2} +a }{b})

Now ,the last calculations :

f(b)=πlnbπlimx0lnx+πlnalimx0xbaπdzza2z2\displaystyle f(b) = \pi \ln b - \pi \lim_{x\to 0} \ln x +\pi \ln a -\lim_{x\to 0} \int_x^b \frac{a\pi dz}{z\sqrt{a^2-z^2}}

=πlnbπlimx0lnx+πlnaπlimx0ln(a2x2+ax)+πln(a2b2+ab)\displaystyle = \pi \ln b - {\color{#D61F06}{\pi \lim_{x\to 0} \ln x +\pi \ln a }} -{\color{#D61F06}{\pi \lim_{x\to 0} \ln( \frac{\sqrt{a^2-x^2} +a }{x})}} + \pi \ln( \frac{\sqrt{a^2-b^2} +a }{b})

=πlnbπlimx0ln(xaa2x2+ax)+πln(a2b2+a)πlnb\displaystyle =\pi \ln b -{\color{#D61F06}{\pi \lim_{x\to 0} \ln (\frac{x}{a} \frac{\sqrt{a^2-x^2} +a }{x}) }}+\pi \ln(\sqrt{a^2-b^2} +a) - \pi \ln b

=πln2+πln(a2b2+a)\displaystyle = -{\color{#D61F06}{\pi \ln 2}} +\pi \ln(\sqrt{a^2-b^2} +a)

=πln(a2b2+a2)\displaystyle =\boxed{\pi \ln (\frac{\sqrt{a^2-b^2} +a}{2}) }

Hasan Kassim - 6 years, 5 months ago

Log in to reply

@hasan kassim @Parth Lohomi Could you please tell me the final formula? Parth's and Hasan's results differ by a minus sign.

User 123 - 5 years, 11 months ago

Log in to reply

=+πln(a2b2+a2)\displaystyle =\boxed{+\pi \ln (\frac{\sqrt{a^2-b^2} +a}{2}) }

Hasan Kassim - 5 years, 11 months ago

Log in to reply

@Hasan Kassim And this would be for both ±bcos(x)\pm b\cos(x)? In other words, 0π\displaystyle\int_{0}^{\pi}ln\ln(a±(b.cos(x)(a\pm(b.cos(x)))dxdx==+πln(a2b2+a2)=\displaystyle =\boxed{+\pi \ln (\frac{\sqrt{a^2-b^2} +a}{2}) }?

User 123 - 5 years, 11 months ago

Log in to reply

@User 123 yes exactly !

Hasan Kassim - 5 years, 11 months ago

Help !!@Sandeep Bhardwaj Calvin Lin Ronak Agarwal Sean Ty Krishna Ar Pratik Shastri Pi Han Goh Pranav Arora Mursalin Habib @hasan kassim

Parth Lohomi - 6 years, 6 months ago

Log in to reply

Hey @Parth Lohomi ! , I think I had a mistake, check out now the correct answer, I fixed it :)

Hasan Kassim - 6 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...