Sum of nn Out-of-phase Sinusoids with the Same Frequency

nei(x+φn)=n(cos(x+φn)+isin(x+φn))=ncos(x+φn)+nisin(x+φn)=ncos(x+φn)+insin(x+φn)\begin{aligned} \sum\limits_{n}e^{i(x+\varphi_n)}&=\sum\limits_{n}(\cos(x+\varphi_n)+i\sin(x+\varphi_n))\\ &=\sum\limits_{n}\cos(x+\varphi_n)+\sum\limits_{n}i\sin(x+\varphi_n)\\ &=\sum\limits_{n}\cos(x+\varphi_n)+i\sum\limits_{n}\sin(x+\varphi_n)\\ \end{aligned}

nei(x+φn)=neix+iφn=neixeiφn=eixneiφn=eixn(cos(φn)+isin(φn))=eix(ncos(φn)+nisin(φn))=eix(ncos(φn)+insin(φn))=eix(A+iB)=eixA2+B2eiarg(A+iB)=A2+B2eix+iarg(A+iB)=A2+B2ei(x+arg(A+iB))=A2+B2(cos(x+arg(A+iB))+isin(x+arg(A+iB)))=A2+B2cos(x+arg(A+iB))+iA2+B2sin(x+arg(A+iB))\begin{aligned} \sum\limits_{n}e^{i(x+\varphi_n)}&=\sum\limits_{n}e^{ix+i\varphi_n}\\ &=\sum\limits_{n}e^{ix}e^{i\varphi_n}\\ &=e^{ix}\sum\limits_{n}e^{i\varphi_n}\\ &=e^{ix}\sum\limits_{n}(\cos(\varphi_n)+i\sin(\varphi_n))\\ &=e^{ix}\left(\sum\limits_{n}\cos(\varphi_n)+\sum\limits_{n}i\sin(\varphi_n)\right)\\ &=e^{ix}\left(\sum\limits_{n}\cos(\varphi_n)+i\sum\limits_{n}\sin(\varphi_n)\right)\\ &=e^{ix}(A+iB)\\ &=e^{ix}\sqrt{A^2+B^2}e^{i\arg(A+iB)}\\ &=\sqrt{A^2+B^2}e^{ix+i\arg(A+iB)}\\ &=\sqrt{A^2+B^2}e^{i(x+\arg(A+iB))}\\ &=\sqrt{A^2+B^2}(\cos(x+\arg(A+iB))+i\sin(x+\arg(A+iB)))\\ &=\sqrt{A^2+B^2}\cos(x+\arg(A+iB))+i\sqrt{A^2+B^2}\sin(x+\arg(A+iB)) \end{aligned}

{nsin(x+φn)=A2+B2sin(x+arg(A+iB))ncos(x+φn)=A2+B2cos(x+arg(A+iB))A=ncos(φn)B=nsin(φn)\boxed{ \begin{cases} \sum\limits_{n}\sin(x+\varphi_n)=\sqrt{A^2+B^2}\sin(x+\arg(A+iB))\\ \sum\limits_{n}\cos(x+\varphi_n)=\sqrt{A^2+B^2}\cos(x+\arg(A+iB))\\ A=\sum\limits_{n}\cos(\varphi_n)\\ B=\sum\limits_{n}\sin(\varphi_n) \end{cases}}

Example:

=sin(2π(t+e))+sin(2πt+69)+sin(2πt+42)=sin(2πt+2πe)+sin(2πt+69)+sin(2πt+42)=A2+B2sin(2πt+arg(A+iB))\begin{aligned} &\phantom{=}\sin(2\pi(t+e))+\sin(2\pi t+69)+\sin(2\pi t+42^\circ)\\ &=\sin(2\pi t+2\pi e)+\sin(2\pi t+69)+\sin(2\pi t+42^\circ)\\ &=\sqrt{A^2+B^2}\sin(2\pi t+\arg(A+iB)) \end{aligned} {A=cos(2πe)+cos(69)+cos(42)1.53856064504B=sin(2πe)+sin(69)+sin(42)0.425861365902\begin{cases} A=\cos(2\pi e)+\cos(69)+\cos(42^\circ)\approx1.53856064504\\ B=\sin(2\pi e)+\sin(69)+\sin(42^\circ)\approx-0.425861365902 \end{cases} A2+B21.59641058674\sqrt{A^2+B^2}\approx1.59641058674 arg(A+iB)=tan1(BA)15.4716657207\arg(A+iB)=\tan^{-1}\left(\frac BA\right)\approx-15.4716657207^\circ sin(2π(t+e))+sin(2πt+69)+sin(2πt+42)1.60sin(2πt15.5)\sin(2\pi(t+e))+\sin(2\pi t+69)+\sin(2\pi t+42^\circ)\approx\boxed{1.60\sin(2\pi t-15.5^\circ)}

#Algebra

Note by Gandoff Tan
12 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Great

A Former Brilliant Member - 8 months, 3 weeks ago
×

Problem Loading...

Note Loading...

Set Loading...