\(\text{Original & Alternating}\)

1+12+13+14+15+16+17+18+=112+1314+1516+1718+=ln21+13+15+17+19+111+113+115+=113+1517+19111+113115+=π41+12+14+18+116+132+164+1128+=2112+1418+116132+1641128+=231+122+132+142+152+162+172+182+=π261122+132142+152162+172182+=π2121+12!+13!+14!+15!+16!+17!+18!+=e1112!+13!14!+15!16!+17!18!+=11e1+13!+15!+17!+19!+111!+113!+115!+=sinh1113!+15!17!+19!111!+113!115!+=sin11+12!+14!+16!+18!+110!+112!+114!+=cosh1112!+14!16!+18!110!+112!114!+=cos11+2+3+4+5+6+7+8+=11212+34+56+78+=14\begin{aligned} 1 + \dfrac12 + \dfrac13 + \dfrac14 + \dfrac15 + \dfrac16 + \dfrac17 + \dfrac18 + \dots &= \infty \\ 1 - \dfrac12 + \dfrac13 - \dfrac14 + \dfrac15 - \dfrac16 + \dfrac17 - \dfrac18 + \dots &= \ln2 \\ \\ 1 + \dfrac13 + \dfrac15 + \dfrac17 + \dfrac19 + \dfrac{1}{11} + \dfrac1{13} + \dfrac1{15} + \dots &= \infty \\ 1 - \dfrac13 + \dfrac15 - \dfrac17 + \dfrac19 - \dfrac{1}{11} + \dfrac1{13} - \dfrac1{15} + \dots &= \dfrac{\pi}{4} \\ \\ 1 + \dfrac12 + \dfrac14 + \dfrac18 + \dfrac1{16} + \dfrac{1}{32} + \dfrac1{64} + \dfrac1{128} + \dots &= 2 \\ 1 - \dfrac12 + \dfrac14 - \dfrac18 + \dfrac1{16} - \dfrac{1}{32} + \dfrac1{64} - \dfrac1{128} + \dots &= \dfrac23 \\ \\ 1 + \frac1{2^2} + \dfrac1{3^2} + \dfrac1{4^2} + \dfrac1{5^2} + \dfrac1{6^2} + \dfrac1{7^2} + \dfrac1{8^2} + \dots &= \dfrac{\pi^2}{6} \\ 1 - \frac1{2^2} + \dfrac1{3^2} - \dfrac1{4^2} + \dfrac1{5^2} - \dfrac1{6^2} + \dfrac1{7^2} - \dfrac1{8^2} + \dots &= \dfrac{\pi^2}{12} \\ \\ 1 + \frac1{2!} + \dfrac1{3!} + \dfrac1{4!} + \dfrac1{5!} + \dfrac1{6!} + \dfrac1{7!} + \dfrac1{8!} + \dots &= e - 1 \\ 1 - \frac1{2!} + \dfrac1{3!} - \dfrac1{4!} + \dfrac1{5!} - \dfrac1{6!} + \dfrac1{7!} - \dfrac1{8!} + \dots &= 1 - \dfrac1e \\ \\ 1 + \frac1{3!} + \dfrac1{5!} + \dfrac1{7!} + \dfrac1{9!} + \dfrac1{11!} + \dfrac1{13!} + \dfrac1{15!} + \dots &= \sinh1 \\ 1 - \frac1{3!} + \dfrac1{5!} - \dfrac1{7!} + \dfrac1{9!} - \dfrac1{11!} + \dfrac1{13!} - \dfrac1{15!} + \dots &= \sin1 \\ \\ 1 + \frac1{2!} + \dfrac1{4!} + \dfrac1{6!} + \dfrac1{8!} + \dfrac1{10!} + \dfrac1{12!} + \dfrac1{14!} + \dots &= \cosh1 \\ 1 - \frac1{2!} + \dfrac1{4!} - \dfrac1{6!} + \dfrac1{8!} - \dfrac1{10!} + \dfrac1{12!} - \dfrac1{14!} + \dots &= \cos1 \\ \\ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + \dots &= \dfrac{-1}{12} \\ 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + \dots &= \dfrac{1}{4} \\ \end{aligned}

Source: blackpenredpen\text{Source: blackpen}\textcolor{#D61F06}{redpen}

Note by Adhiraj Dutta
1 year, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Really cool! @Adhiraj Dutta

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

Glad you liked it @Yajat Shamji

Adhiraj Dutta - 1 year, 1 month ago

If you sourced BlackpenRedPen, he mentions that the second-last series has value 18\dfrac{-1}{8} and not 112\dfrac{-1}{12}, although there can be many more values according to algebraic manipulations. Afterall =+1\infty= \infty+ 1

Mahdi Raza - 1 year ago

Log in to reply

I used Ramanujan's summation.

Adhiraj Dutta - 1 year ago
×

Problem Loading...

Note Loading...

Set Loading...