The Answer

pursuant to: https://brilliant.org/discussions/thread/how-many-numbers-do-a-given-set-of-primes-can/

I will soon publish the complete equations used to generate how many numbers do a given set of primes generate as a fraction of all natural numbers. But if you decided to take me up on my challenge to try and get the answer for the list containing the first 500 primes I'll post the answer here so that you can check if your answer is the correct one.

If you did manage, congrats, you just did what using brute force only would have taken a supercomputer running at 1 exaflop more than 1000 times the age of the universe to solve!

The 500th prime is 3571

The answer is:

51939918537490815223042767154853154018465570745270456640254362658509603993648445568775630780796265013021776571954845664592945522923026070618511786383419419170277432797488676590029326621437831319788162263658133339378876549060991549922263666468834035926317097559895439943336369084078411195565406861569501158987612106971111698017324914904042330810179460976608237885519747645907573767454892737867605955835420474127881652740047271367680962891271160323851299947664465509396763728161777894213844593830898165225104542305490224609002293834828950049571684374946251898675657442493651263836992280340025700826822939659719402026557253711693650427400139414314006363128300227172062226918388528339747687304257395875290701446279430867441784980374931600583557296767480402614853169012672549828929732151858513723867875433719550807207456587272616600884323600309864137144008509975210815047858394156861796493253923351239329142819179309203285663535350860437064222106745935888271767495170275518594729957930590917207922800284940661956600397373529810586710580144886708314585223655838257407234317637054699545381079782918576863751821772187647948034053960847588432186770133476198220265937267747153388234433498667785997890662341090043348653113760819261045319013587639552726131668321618905645509696533241509663994406858097184505140180637298868545904358732710775871408536172715537728855931880353691201445216560710894365610004262956414917197159252312387646100359038105613845904908753479298728844314517378439149416982869986427478111210565465393664365910490 / 55758984689722289456584343973980218794222360410370486600876521412561125169842671687886659915627578314485846550630950819222944524683009022878904770556027761956176488812292947382221931874253777633437134510302575839253650054921377787870682931197177767075132066757080223218612334159440129580349733289519851712159301522543375931349514587435859733735492107313994296156667043427503419582986673982781662867774668590894039881444170127494445039158987921893949715756676877065894693174740972110652141354362897063044455133797605358546568865726130200450453398931223850324605731252778030970280877206693651731691258544219166428510983029690134652373911775732908004812834312649502260848024341710451795869414983978894963623609913555075593913506181212315124360418666956947337288293197871647777293433519967777021652707770405176662004780202185197896420100824550604276415913952059512150237556052370573695632895271000161855803676535981069482744636004186492414111780359468308325187790134844420749002485723228045872532060620305108426893986989664679237034516531411338218169547038879067681156735284547880657542717850600363029661184202208190403252715716314896654798165882449121636125113013429667194028678491053161776662222026477230231753388170200194252994989570844676016623850478712701514744167948059592159916557939219142408953431605497685148890617736571690321615596678521870072250349196777695604645216560710894365610004262956414917197159252312387646100359038105613845904908753479298728844314517378439149416982869986427478111210565465393664365910490

Which could be reduced to

99230356947816393953078513846327732063037105760593199189351660888415207048418285217520257817696054196832259404064371786753141834296029430888193003527176512322141127580610076662667011686802009804003823737247834826060064504357362836474100996843901358583882526923639467159775678419802345301358349536229634120335114332154409321182554019579535582598316408195286568258916294134150439164786794657392625807236999668842358279102057282127647173970163285336242551299017403246103913875661990665331278460051304605301864382524480893904324439534682653686614589955488229103704469393079847217620133551906115496668885356225151951210932982301626150050617026759197220513248966002089222504358538800536392598639552589487486628147267548579085198741412043403521679747112670395588486298310971946993689705344296300013039577006971872485689523972439275699812837754826560407043282742817820672348919762663670553636690605633505804221924563141991394781133368279010107873917974020274390931706315057720521581894237199000138291402478721255009629852969865800578010370639041617498315023535690291398337873459713116491820897322449861157243559214954832064299103075448651445207789588739294521693210733660219146124502534784092842393280324661452900631532605935503779013 / 106526619786960241461317424761626240575511575099502916718485458224410201683582310664763514326234090874458760137896680051861862887330250919913178749494783821914445566350268447574664933603088583947234973475044257464157873647475313154684305011067729372140617885849024504496653674189366412349429321907058939811528432142287781203543981376443914670767926094891112411361612035315889813578606534389587647725337984720881797874812555560075375221692669037489474642634510693436618045019648107498444165863978173229405718531570869435291191728363793993587041905069327804043272681473740696081678733592897047489537078224139509122905691408369560059053767355204537575956541150337616060119006157205584305067619950508716428047331677360435423562395444408659037231638746947280428871345744684126858966209906417921990703569819029187629924280246597471846203493783083894768505802639326262747802129373308199402928134413623482513277297980196483375623482196992417259194652716225894691936546769405257238979401424526147842816384317791240119501636685619506534000003004478552195258315716080322862534975269540956491820897322449861157243559214954832064299103075448651445207789588739294521693210733660219146124502534784092842393280324661452900631532605935503779013

Note by Daniel Magen
4 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...