The Fundamental Theorem of Arithmetic is the easiest of the 3, but it isn't as fundamental as you think it is. It states that every number can be prime factorized uniquely as a product of primes. No 2 numbers have the same prime factorization, and no number has 2 distinct prime factorizations.
For instance, .
cannot be represented as another distinct prime factorizations and no other number is prime factorized into .
You are welcome to prove it in the comments below.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
This factorisation is unique and apart from order.