Here is the previous post concerning the Golden Ratio. For a collection of all the posts concerning the Golden Ratio, click #GoldenRatio below. A knowledge of trigonometry would be useful in understanding this post.
The last question of the previous post inspired this one. There are certainly more interesting things that result from this pentagon than we would expect. For example, take , or an isoceles triangle with angles , , . Extend the angle bisector from one of the larger angles to the other side. What do you get? If you draw a picture (strongly encouraged) and do some angle chasing, you will find that one of the triangles made is similar to the original triangle! The other resulting triangle should be a familiar triangle. Note what happens too when you divide the angle into and . What if you trisect the angle in this triangle? What other dissections can you make? Feel free to post your findings below. The acute triangle is called the golden triangle, while the obtuse triangle is called the golden gnomon.
In my examinations of these figures, I found this especially interesting bit. Let's apply the Law of Cosines on the golden triangle with respect to the angle:
Woah! We used to think that sines and cosines of only , , and (and halves, sums, and multiples thereof) could be expressed nicely. Not any more!
Problem 1: What are the areas of the golden gnomon and golden rhombus? Is there such a thing as a "golden rhombus?" Can you use this information to find the area of a unit pentagon? Post your findings below.
Problem 2: Make a table or list of the sines, cosines, and tangents of some sums and multiples of . Post your findings below.
Click here to learn about another triangle involving the golden ratio.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Golden gnomon??