I'd like to bring your attention to this easy geometry problem that I call "The Green Zone Problem". Let's suppose there is an imaginary city in the Middle-earth. I call this imaginary city as Indigo City (feel free to give any cool name) and its shape is a triangle like the picture below:
The inscribed circle of the triangle is the incircle where the city council lives. The Green Zone is a city forest like Central Park in New York City. The interesting fact about the Green Zone is its boundary is always equidistant from the centre of circle and the closest triangle side, i.e. and but . Using the conventional notations, we denote , , and . Just for the sake of fun, determine the area of the Green Zone in term of , , and .
Hint: If the shape of Indigo City is an equilateral triangle, unless I'm very much mistaken, then its area is .
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Ah, a nice way of introducing that wonderful property of X.
(Where X is to be determined by the reader)
For an equilateral triangle, I'm getting 2723a2, with a being the side of the triangle. The boundaries of the green zone are made up of parabolas right? Unless I did something wrong here, then I have a method to generalise this.
This is the solution I got for an equilateral triangle: https://www.desmos.com/calculator/ao5sksutzx