the system of internation quantities,units and symbols

Named units derived from SI base units

Name Symbol Quantity Equivalents SI base unit Equivalents hertz Hz frequency 1/s s−1 radian rad angle m/m dimensionless

steradian sr solid angle m2/m2 dimensionless

newton N force, weight kg⋅m/s2 kg⋅m⋅s−2 pascal Pa pressure, stress N/m2 kg⋅m−1⋅s−2 joule J energy, work, heat N⋅m C⋅V W⋅s kg⋅m2⋅s−2 watt W power, radiant flux J/s V⋅A kg⋅m2⋅s−3 coulomb C electric charge or quantity of electricity s⋅A s⋅A volt V voltage, electrical potential difference, electromotive force W/A J/C kg⋅m2⋅s−3⋅A−1 farad F electrical capacitance C/V s/Ω kg−1⋅m−2⋅s4⋅A2 ohm Ω electrical resistance, impedance, reactance V/A kg⋅m2⋅s−3⋅A−2 siemens S electrical conductance 1/Ω A/V kg−1⋅m−2⋅s3⋅A2 weber Wb magnetic flux J/A kg⋅m2⋅s−2⋅A−1 tesla T magnetic field strength, magnetic flux density V⋅s/m2 Wb/m2 N/(A⋅m) kg⋅s−2⋅A−1 henry H inductance V⋅s/A Ω⋅s Wb/A kg⋅m2⋅s−2⋅A−2 degree Celsius C temperature relative to 273.15 K K - 273.15 K - 273.15 lumen lm luminous flux cd⋅sr cd lux lx illuminance lm/m2 m−2⋅cd becquerel Bq radioactivity (decays per unit time) 1/s s−1 gray Gy absorbed dose (of ionizing radiation) J/kg m2⋅s−2 sievert Sv equivalent dose (of ionizing radiation) J/kg m2⋅s−2 katal kat catalytic activity mol/s s−1⋅mol Examples of derived quantities and units Some SI derived units Name Symbol Quantity Expression in terms of SI base units
square metre m2 area m2
cubic metre m3 volume m3
metre per second m/s speed, velocity m⋅s−1
cubic metre per second m3/s volumetric flow m3⋅s−1
metre per second squared m/s2 acceleration m⋅s−2
metre per second cubed m/s3 jerk, jolt m⋅s−3
metre per quartic second m/s4 snap, jounce m⋅s−4
radian per second rad/s angular velocity s−1 newton second N⋅s momentum, impulse m⋅kg⋅s−1
newton metre second N⋅m⋅s angular momentum m2⋅kg⋅s−1
newton metre N⋅m = J/rad torque, moment of force m2⋅kg⋅s−2
newton per second N/s yank m⋅kg⋅s−3
reciprocal metre m−1 wavenumber m−1 kilogram per square metre kg/m2 area density m−2⋅kg
kilogram per cubic metre kg/m3 density, mass density m−3⋅kg
cubic metre per kilogram m3/kg specific volume m3⋅kg−1 mole per cubic metre mol/m3 amount of substance concentration m−3⋅mol cubic metre per mole m3/mol molar volume m3⋅mol−1
joule second J⋅s action m2⋅kg⋅s−1
joule per kelvin J/K heat capacity, entropy m2⋅kg⋅s−2⋅K−1
joule per kelvin mole J/(K⋅mol) molar heat capacity, molar entropy m2⋅kg⋅s−2⋅K−1⋅mol−1 joule per kilogram kelvin J/(K⋅kg) specific heat capacity, specific entropy m2⋅s−2⋅K−1
joule per mole J/mol molar energy m2⋅kg⋅s−2⋅mol−1 joule per kilogram J/kg specific energy m2⋅s−2
joule per cubic metre J/m3 energy density m−1⋅kg⋅s−2
newton per metre N/m = J/m2 surface tension, stiffness kg⋅s−2
watt per square metre W/m2 heat flux density, irradiance kg⋅s−3
watt per metre kelvin W/(m⋅K) thermal conductivity m⋅kg⋅s−3⋅K−1
square metre per second m2/s kinematic viscosity, diffusion coefficient m2⋅s−1
pascal second Pa⋅s = N⋅s/m2 dynamic viscosity m−1⋅kg⋅s−1
coulomb per square metre C/m2 electric displacement field, polarization vector m−2⋅s⋅A coulomb per cubic metre C/m3 electric charge density m−3⋅s⋅A ampere per square metre A/m2 electric current density A⋅m−2
siemens per metre S/m conductivity m−3⋅kg−1⋅s3⋅A2
siemens square metre per mole S⋅m2/mol molar conductivity kg-1⋅s3⋅mol−1⋅A2
farad per metre F/m permittivity m−3⋅kg−1⋅s4⋅A2
henry per metre H/m permeability m⋅kg⋅s−2⋅A−2
volt per metre V/m electric field strength m⋅kg⋅s−3⋅A−1
ampere per metre A/m magnetic field strength A⋅m−1
candela per square metre cd/m2 luminance cd⋅m−2
lumen second lm⋅s luminous energy cd⋅sr⋅s lux second lx⋅s luminous exposure cd⋅sr⋅s/m−2 coulomb per kilogram C/kg exposure (X and gamma rays) kg−1⋅s⋅A
gray per second Gy/s absorbed dose rate m2⋅s−3
ohm metre Ω⋅m resistivity m3⋅kg⋅s−3⋅A−2

Note by Hassam Rind
7 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...