From the first part we got to
π.ssinπ.scosπ.s=1+k=1∑∞(1−k2s2)1.−k22s2
Note that sinπ.scosπ.s=cotan(π.s).
We can take the -2 up front and use the geometric series formula to obtain:
π.s.cotan(π.s)=
=1−2.k=1∑∞[1+k2s2+k4s4...].k2s2=1−2.k=1∑∞(n=1∑∞(k2s2)n)=
=1−2.n=1∑∞12ns2n+22ns2n...=1−2.n=1∑∞ζ(2n).s2n
Now let's try to find a different representation of π.s.cotan(π.s)
π.s.cotan(π.s)=π.s.sinπ.scosπ.s=
=π.s.2ei.π.s+e−i.π.s.ei.π.s−e−i.π.s2i=
=π.s.i.ei.π.s−e−i.π.sei.π.s+e−i.π.s.
Multiplying the numerator and denominator by ei.π.s we get
π.s.cotan(π.s)=π.s.i.e2i.π.s−1e2i.π.s+1=
=i.π.s+e2i.π.s−12.i.π.s
We now need to find an infinite series for ez−1z
Let's assume we have an infinite series representation of that
ez−1z=n=0∑∞n!βn.zn
Then, multiplying both sides by ez−1, using the Taylor expansion for ez and dividing by z, we get
1=n=0∑∞n!βn.zn.n=0∑∞(n+1)!zn
Tune in next time for Part 3
#Calculus
#RiemannZetaFunction
#Goldbach'sConjurersGroup
#TorqueGroup
#InfiniteSeries
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.