Statement 1. \(f(x,y)\) is a function that is cyclic in the variables, does this mean that subject to \( x+y = 1 \), the local minimum or maximum can only occur at \( f( \frac{1}{2}, \frac{1}{2} ) ? \)
Statement 2. is a function that is cyclic in the variables, does this mean that subject to , the local minimum or maximum can only occur at ?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
For counterexamples, take f(x,y)=xy and f(x,y,z)=xyz
Log in to reply
That's a quick reply.
I've updated it slightly, to get at the original intention.