Thinking Like Einstein- Light

Suppose i am in a closed room and there are two bulbs on opposite walls. the light coming from them "intersect" at a point but have no effect on one another. Why? it seems as if they just pass through each other. Why? and How?

#Physics

Note by Tushar Gopalka
7 years, 11 months ago

No vote yet
4 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Your statement that they don't interact is actually wrong....the right statement is that they don't interact very much. :) But the difference is important, as it makes light act more like any other particle. Particles interact with each other, just with different strengths.

David Mattingly Staff - 7 years, 11 months ago

Log in to reply

Thanks

Tushar Gopalka - 7 years, 11 months ago

When they meet as they are transparent they pass through each other or small amount of refraction takes place.......Hope this is correct

Karthik Datta - 7 years, 11 months ago

As light functions both as a wave and as a particle, two sources of light opposite each other. What you would see over time would be a two point source interference pattern at the center as a result of basic quantum effects.

Edit: You're asking about quantum effects, and these quantum effects are primarily invisible outside of a very small influence in the form of wave interference. Let me put this differently. As light is the force carrying particle of the electromagnetic force, it essentially does not "exist" until it is absorbed or interacts with an object. There are an infinite collection of different paths that the light may take to get to a given point, obeying Feynman's path integral formulation. Despite the simplest explanation, photons are not individual tiny balls that are sent and transfer energy when they hit things. A photon interferes with itself, with all of its different paths being important in formulating the observed interaction. A photon however, does not pass through another photon, as until they come to realization, they act generally as waves, which is what you see focusing on small quantum areas.

To put it simply, photons may as well not exist, where only the final "product" is important.

Eric Zelikman - 7 years, 11 months ago

Log in to reply

this is a little bit satisfactory....but still I believe there's a better explanation..no offence though...Thanks for answering........

Tushar Gopalka - 7 years, 11 months ago

Log in to reply

I've updated my original explanation with more information to possibly elucidate it further (Also, it's written Einstein).

Eric Zelikman - 7 years, 11 months ago

Please, David answer this...

Tushar Gopalka - 7 years, 11 months ago

yes what can we under stand light??????????????????????????

Attain k Gupta - 7 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...