This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
Correct the key here is that they will attain the terminal velocity..!!
We can have a bonus question now..
If two identical drops fall from clouds at different heights, which will hit the groud with greater speed, the one from the higher cloud or the other one?
Assuming they both manage to reach terminal velocity (a very reasonable assumption), they will both hit the ground at the same speed (terminal velocity).
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let us derive a simplistic formula for terminal velocity:
Assume a spherical liquid drop of radius r, density ρ and coefficient of viscosity η. It is falling through air of density σ.
The forces acting on it are:
At terminal velocity, our drop is in equilibrium:
34πr3ρg=6πηrVT+34πr3σg
Simplifying this, we obtain the expression for terminal velocity:
VT=9η2r2g(ρ−σ)
This shows that a drop with larger radius will reach the ground at a higher terminal velocity.
Log in to reply
Correct the key here is that they will attain the terminal velocity..!!
We can have a bonus question now..
If two identical drops fall from clouds at different heights, which will hit the groud with greater speed, the one from the higher cloud or the other one?
Log in to reply
Assuming they both manage to reach terminal velocity (a very reasonable assumption), they will both hit the ground at the same speed (terminal velocity).
Log in to reply
Assuming drops to be spheres, just use that odd equation for terminal velocity of bodies.