Thought Of the Day_3_EMI&MagneticField!!

Comments are Invited !!\Large \text{Comments are Invited !!}

#ElectricityAndMagnetism #Electromagnetism #EMI

Note by Rohit Gupta
6 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Yes, an induced electric field can exist at a point which has zero magnetic field. If there is a time varying magnetic field, it produces an induced electric field, a magnetic field can vary with time and also simultaneously have its magnitude zero at an instant.

Raghav Vaidyanathan - 6 years ago

I think that induced electric field can exist at a point where there is no magnetic field at all. Am I right ? @Rohit Gupta sir

Sandeep Bhardwaj - 6 years ago

Log in to reply

Yes You right Sandeep Bhardwaj, If there is a variable magnetic field confined to a specific region then the induced electric field produced can go beyond that region as well..!!

Rohit Gupta - 6 years ago

Yes electric field does exist at a point where magnetic field is not present, but the toughness lies in finding the magnitude and direction of electric field. For that we have solve super hard differential equations unless we have circular symmetry of magnetic field.

Ronak Agarwal - 6 years ago

Probably yes..

mihir raj - 6 years ago

Log in to reply

Yes is the correct Answer..!!

Rohit Gupta - 6 years ago

yes

Aryan Chandra - 6 years ago

Let's change the question into another way round.

When two electrons are traveling parallel in space, it was concluded that attraction force due to (mutual?) magnetic induction shall never be greater than repelling force due to electrostatic force.

Unless drifting inside an electrical conductor with many protons around to make the wire to attract each other, two electrons alone cannot attract each other, otherwise they shall eventually collide.

Now, talking about an absolute speed, if only the electrons know that they are in motion, then they tend to get closer to each other. Note that this has nothing to do with direction of motion but perpendicular direction to motion only.

When we spin a pail of water, a parabolic shape formed by a force challenging the gravity. This shows that the pail of water knows what had happened around it.

Don't you think that the electrons suppose to know what happened to themselves in this way as well?

Lu Chee Ket - 5 years, 7 months ago

if the magnetic field at any point is varying, even with the magnetic field zero at an instant, EMF is induced and if the circuit is closed electric current is also induced. the magnetic field just needs to vary with time.

Ansh Bhatt - 6 years ago

Log in to reply

Exactly its not about the magnitude of magnetic field its about the magnitude of rate of change of magnetic field...

Rohit Gupta - 6 years ago

Ansh we can generalize this further , even if there is a region of time varying magnetic field 2 km from us then also we will experience induced electric field.

Ronak Agarwal - 6 years ago

Yes

rohit khatkar - 5 years, 11 months ago

yes.... because magnetic field produced by moving charge... not in static charge.... in induced current there is static charge.... but when we move that charge then we experience magnetic field

Prince Sharan - 5 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...