Trigonometric Infinite Series

n=0sin(3π10(2n+1))sin(π10(2n+1))(2n+1)2=2G5\sum_{n=0}^{\infty} \dfrac{ \sin\left( \dfrac{3 \pi}{10} (2n+1)\right)-\sin\left( \dfrac{\pi}{10} (2n+1)\right)}{(2n+1)^2} = \dfrac{2 G}{5}

Prove the equation above.

Notation: G=n=0(1)n(2n+1)20.916\displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 denotes the Catalan's constant.


This is a part of the set Formidable Series and Integrals

#Calculus

Note by Ishan Singh
4 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Let us consider sin((2n+1)3π10)sin((2n+1)π10)\displaystyle \sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right) for the first few nn.

n=0sin3π10sinπ10=cosπ5+cos3π5=12n=1sinπ10sin3π10=cos3π5cosπ5=12n=2sin3π2sinπ2=11=2n=3sinπ10sin3π10==12n=4sin3π10sinπ10==12n=5sin3π10+sinπ10==12n=6sinπ10+sin3π10==12n=7sinπ2sin3π2=2n=8sinπ10+sin3π10==12n=9sin3π10+sinπ10==12.........\begin{array}{c}n = 0 & \sin \frac{3\pi}{10} - \sin \frac{\pi}{10} = \cos \frac{\pi}{5} + \cos \frac{3\pi}{5} & = \frac 12 \\ n = 1 & \sin \frac{\pi}{10} - \sin \frac{3\pi}{10} = -\cos \frac{3\pi}{5} - \cos \frac{\pi}{5} & = - \frac 12 \\ n = 2 & \sin \frac{3\pi}{2} - \sin \frac{\pi}{2} = -1-1 & = -2 \\ n = 3 & \sin \frac{\pi}{10} - \sin \frac{3\pi}{10} = & = - \frac 12 \\ n = 4 & \sin \frac{3\pi}{10} - \sin \frac{\pi}{10} = & = \frac 12 \\ n = 5 & -\sin \frac{3\pi}{10} + \sin \frac{\pi}{10} = & = - \frac 12 \\ n = 6 & -\sin \frac{\pi}{10} + \sin \frac{3\pi}{10} = & = \frac 12 \\ n = 7 & \sin \frac{\pi}{2} - \sin \frac{3\pi}{2} & = 2 \\ n = 8 & -\sin \frac{\pi}{10} + \sin \frac{3\pi}{10} = & = \frac 12 \\ n = 9 & -\sin \frac{3\pi}{10} + \sin \frac{\pi}{10} = & = -\frac 12 \\ ... & ... & ... \end{array}

    sin((2n+1)3π10)sin((2n+1)π10)={If n mod 52:{12if n is even12if n is oddIf n mod 5=2:{2if n+35 is even2if n+35 is odd\implies \displaystyle \sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right) = \begin{cases} \text{If } n \text{ mod } 5 \ne 2: & \begin{cases} \frac 12 & \text{if } n \text{ is even} \\ - \frac 12 & \text{if } n \text{ is odd} \end{cases} \\ \text{If } n \text{ mod } 5 = 2: & \begin{cases} 2 & \text{if } \frac {n+3}5 \text{ is even} \\ -2 & \text{if } \frac {n+3}5 \text{ is odd} \end{cases} \end{cases}

The sum is as follows:

S=n=0sin((2n+1)3π10)sin((2n+1)π10)(2n+1)2=121212322521272+129212112+12132+2152+1217212192+1221212232225212272+...=12n=0(1)n(2n+1)252n=0(1)n(10n+5)2=12n=0(1)n(2n+1)2110n=0(1)n(2n+1)2=(12110)G=2G5\begin{aligned} S & = \sum_{n=0}^\infty \frac {\sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right)}{(2n+1)^2} \\ & = \frac {\frac12}{1^2} - \frac {\frac12}{3^2} - \frac {2}{5^2} - \frac {\frac12}{7^2} + \frac {\frac12}{9^2} - \frac {\frac12}{11^2} + \frac {\frac12}{13^2} + \frac {2}{15^2} + \frac {\frac12}{17^2} - \frac {\frac12}{19^2} + \frac {\frac12}{21^2} - \frac {\frac12}{23^2} - \frac {2}{25^2} - \frac {\frac12}{27^2} + ... \\ & = \frac 12 \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} - \frac 52 \sum_{n=0}^\infty \frac {(-1)^n}{(10n+5)^2} \\ & = \frac 12 \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} - \frac 1{10} \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} \\ & = \left(\frac 12 - \frac 1{10} \right) G = \boxed{\dfrac {2G}5} \end{aligned}

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Nice way of using observation!

Aditya Kumar - 4 years, 11 months ago

Similar to hummus lucas numbers question 😉

Aman Rajput - 4 years, 11 months ago

is there any other solution

Liu Yang - 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...