∑n=0∞sin(3π10(2n+1))−sin(π10(2n+1))(2n+1)2=2G5\sum_{n=0}^{\infty} \dfrac{ \sin\left( \dfrac{3 \pi}{10} (2n+1)\right)-\sin\left( \dfrac{\pi}{10} (2n+1)\right)}{(2n+1)^2} = \dfrac{2 G}{5}n=0∑∞(2n+1)2sin(103π(2n+1))−sin(10π(2n+1))=52G
Prove the equation above.
Notation: G=∑n=0∞(−1)n(2n+1)2≈0.916\displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 G=n=0∑∞(2n+1)2(−1)n≈0.916 denotes the Catalan's constant.
This is a part of the set Formidable Series and Integrals
Note by Ishan Singh 4 years, 11 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Let us consider sin((2n+1)3π10)−sin((2n+1)π10)\displaystyle \sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right)sin((2n+1)103π)−sin((2n+1)10π) for the first few nnn.
n=0sin3π10−sinπ10=cosπ5+cos3π5=12n=1sinπ10−sin3π10=−cos3π5−cosπ5=−12n=2sin3π2−sinπ2=−1−1=−2n=3sinπ10−sin3π10==−12n=4sin3π10−sinπ10==12n=5−sin3π10+sinπ10==−12n=6−sinπ10+sin3π10==12n=7sinπ2−sin3π2=2n=8−sinπ10+sin3π10==12n=9−sin3π10+sinπ10==−12.........\begin{array}{c}n = 0 & \sin \frac{3\pi}{10} - \sin \frac{\pi}{10} = \cos \frac{\pi}{5} + \cos \frac{3\pi}{5} & = \frac 12 \\ n = 1 & \sin \frac{\pi}{10} - \sin \frac{3\pi}{10} = -\cos \frac{3\pi}{5} - \cos \frac{\pi}{5} & = - \frac 12 \\ n = 2 & \sin \frac{3\pi}{2} - \sin \frac{\pi}{2} = -1-1 & = -2 \\ n = 3 & \sin \frac{\pi}{10} - \sin \frac{3\pi}{10} = & = - \frac 12 \\ n = 4 & \sin \frac{3\pi}{10} - \sin \frac{\pi}{10} = & = \frac 12 \\ n = 5 & -\sin \frac{3\pi}{10} + \sin \frac{\pi}{10} = & = - \frac 12 \\ n = 6 & -\sin \frac{\pi}{10} + \sin \frac{3\pi}{10} = & = \frac 12 \\ n = 7 & \sin \frac{\pi}{2} - \sin \frac{3\pi}{2} & = 2 \\ n = 8 & -\sin \frac{\pi}{10} + \sin \frac{3\pi}{10} = & = \frac 12 \\ n = 9 & -\sin \frac{3\pi}{10} + \sin \frac{\pi}{10} = & = -\frac 12 \\ ... & ... & ... \end{array} n=0n=1n=2n=3n=4n=5n=6n=7n=8n=9...sin103π−sin10π=cos5π+cos53πsin10π−sin103π=−cos53π−cos5πsin23π−sin2π=−1−1sin10π−sin103π=sin103π−sin10π=−sin103π+sin10π=−sin10π+sin103π=sin2π−sin23π−sin10π+sin103π=−sin103π+sin10π=...=21=−21=−2=−21=21=−21=21=2=21=−21...
⟹ sin((2n+1)3π10)−sin((2n+1)π10)={If n mod 5≠2:{12if n is even−12if n is oddIf n mod 5=2:{2if n+35 is even−2if n+35 is odd\implies \displaystyle \sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right) = \begin{cases} \text{If } n \text{ mod } 5 \ne 2: & \begin{cases} \frac 12 & \text{if } n \text{ is even} \\ - \frac 12 & \text{if } n \text{ is odd} \end{cases} \\ \text{If } n \text{ mod } 5 = 2: & \begin{cases} 2 & \text{if } \frac {n+3}5 \text{ is even} \\ -2 & \text{if } \frac {n+3}5 \text{ is odd} \end{cases} \end{cases} ⟹sin((2n+1)103π)−sin((2n+1)10π)=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧If n mod 5=2:If n mod 5=2:{21−21if n is evenif n is odd{2−2if 5n+3 is evenif 5n+3 is odd
The sum is as follows:
S=∑n=0∞sin((2n+1)3π10)−sin((2n+1)π10)(2n+1)2=1212−1232−252−1272+1292−12112+12132+2152+12172−12192+12212−12232−2252−12272+...=12∑n=0∞(−1)n(2n+1)2−52∑n=0∞(−1)n(10n+5)2=12∑n=0∞(−1)n(2n+1)2−110∑n=0∞(−1)n(2n+1)2=(12−110)G=2G5\begin{aligned} S & = \sum_{n=0}^\infty \frac {\sin \left((2n+1)\frac{3\pi}{10}\right) - \sin \left((2n+1)\frac{\pi}{10}\right)}{(2n+1)^2} \\ & = \frac {\frac12}{1^2} - \frac {\frac12}{3^2} - \frac {2}{5^2} - \frac {\frac12}{7^2} + \frac {\frac12}{9^2} - \frac {\frac12}{11^2} + \frac {\frac12}{13^2} + \frac {2}{15^2} + \frac {\frac12}{17^2} - \frac {\frac12}{19^2} + \frac {\frac12}{21^2} - \frac {\frac12}{23^2} - \frac {2}{25^2} - \frac {\frac12}{27^2} + ... \\ & = \frac 12 \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} - \frac 52 \sum_{n=0}^\infty \frac {(-1)^n}{(10n+5)^2} \\ & = \frac 12 \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} - \frac 1{10} \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)^2} \\ & = \left(\frac 12 - \frac 1{10} \right) G = \boxed{\dfrac {2G}5} \end{aligned} S=n=0∑∞(2n+1)2sin((2n+1)103π)−sin((2n+1)10π)=1221−3221−522−7221+9221−11221+13221+1522+17221−19221+21221−23221−2522−27221+...=21n=0∑∞(2n+1)2(−1)n−25n=0∑∞(10n+5)2(−1)n=21n=0∑∞(2n+1)2(−1)n−101n=0∑∞(2n+1)2(−1)n=(21−101)G=52G
Log in to reply
Nice way of using observation!
Similar to hummus lucas numbers question 😉
is there any other solution
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let us consider sin((2n+1)103π)−sin((2n+1)10π) for the first few n.
n=0n=1n=2n=3n=4n=5n=6n=7n=8n=9...sin103π−sin10π=cos5π+cos53πsin10π−sin103π=−cos53π−cos5πsin23π−sin2π=−1−1sin10π−sin103π=sin103π−sin10π=−sin103π+sin10π=−sin10π+sin103π=sin2π−sin23π−sin10π+sin103π=−sin103π+sin10π=...=21=−21=−2=−21=21=−21=21=2=21=−21...
⟹sin((2n+1)103π)−sin((2n+1)10π)=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧If n mod 5=2:If n mod 5=2:{21−21if n is evenif n is odd{2−2if 5n+3 is evenif 5n+3 is odd
The sum is as follows:
S=n=0∑∞(2n+1)2sin((2n+1)103π)−sin((2n+1)10π)=1221−3221−522−7221+9221−11221+13221+1522+17221−19221+21221−23221−2522−27221+...=21n=0∑∞(2n+1)2(−1)n−25n=0∑∞(10n+5)2(−1)n=21n=0∑∞(2n+1)2(−1)n−101n=0∑∞(2n+1)2(−1)n=(21−101)G=52G
Log in to reply
Nice way of using observation!
Similar to hummus lucas numbers question 😉
is there any other solution