The following problems need only trigonometric definition of functions and the equation
sin2θ+cos2θ=1
unless otherwise stated. More will be written.
Prove the following:
cscθ⋅cosθ=cotθ
cscθ⋅tanθ=secθ
1+tan2(−θ)=sec2θ
cosθ(tanθ+cotθ)=cscθ
sinθ(tanθ+cotθ)=secθ
tanθ⋅cotθ−cos2θ=sin2θ
sinθ⋅cscθ−cos2θ=sin2θ
(secθ−1)(secθ+1)=tan2θ
(cscθ−1)(cscθ+1)=cot2θ
(secθ−tanθ)(secθ+tanθ)=1
sin2θ(1+cot2θ)=1
(1−sin2θ)(1+tanθ)=1
(sinθ+cosθ)2+(sinθ−cosθ)=2
tan2θ⋅cos2θ+cot2θ⋅sin2θ=1
sec4θ−sec2θ=tan4θ+tan2θ
secθ−tanθ=1+sinθcosθ
cscθ−cotθ=1+sinθsinθ
3sin2θ+4cos2θ=3+cos2θ
9sec2θ−5tan2θ=5+4sec2θ
1−1+sinθcos2θ=sinθ
1−1−cosθsin2θ=−cosθ
1−tanθ1+tanθ=cotθ−1cotθ+1
cscθsecθ+cosθsinθ=2tanθ
cotθcscθ−1=cscθ+1cotθ
1−sinθ1+sinθ=cscθ−1cscθ+1
cosθ1−sinθ+1−sinθcosθ=2secθ
sinθ−cosθsinθ=1−cotθ1
1−1+cosθsin2θ=cosθ
1+sinθ1−sinθ=(secθ−tanθ)2
1−tanθcosθ+1−cotθsinθ=sinθ+cosθ
1−tanθcotθ+1−cotθtanθ=1+tanθ+cotθ
tanθ+1+sinθcosθ=secθ
#Geometry
#TrigonometricIdentities
#Sharky
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Here's a nice result which involves all six ratios :
(sinθ+cosθ)(tanθ+cotθ)=secθ+cscθ
Can you hear the Proving Trigonometric Identities Wiki page calling out your name?
Thank You, it is a good practice for we beginners!
Log in to reply
yes