T's in the plane

You can fit uncountably many lines in the plane (e.g. by having them parallel). You can also fit uncountably many circles in the plane (e.g. by arranging them concentrically).

Can you fit uncountably many capital letter "T"s in the plane? Give an example or prove that you can't.

#Geometry

Note by Maggie Miller
5 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

For every length L, we can think of the plane divided up in to square cells of side length L. Since there are countablly many cells in the grid, as least one cell must contain parts of uncountably many Ts. But there is no dense way to stack Ts, unlike lines and circles. I don't have a quick geometric argument as to why not, but the greatest number of parts of distinct Ts I can get arbitrarily close to each other is 10---that's a lot, but it's countable

Mark C - 5 years, 1 month ago

Log in to reply

I think that's a really good start (and intuitively the whole answer). Try taking little boxes that contain the intersection point (like where the two lines cross) of each T instead of boxes around whole Ts. If you can argue that you only need countably many boxes and that you can only fit countably many intersection point in each box, then you're done. :)

Maggie Miller - 5 years, 1 month ago

Log in to reply

Ah, thanks. You can only get two intersection points in a sufficiently small box.

Mark C - 5 years, 1 month ago
×

Problem Loading...

Note Loading...

Set Loading...