Vieta's Jumping technique

i tried to find about vieta's jumping but everywhere they have shown its application in some of the IMO problems. I want to know the basic principle and and where it comes into use . Any reference or books??please share. And anything about other concepts related to vieta's jumping will also be welcomed.

Note by Tejas Kasetty
7 years, 10 months ago

No vote yet
4 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

The main reason why you have only found applications in olympiad problems, is because this technique's name arose from application in an olympiad problem.

At it's heart, the idea of Vieta's jumping, is about finding integer (or rational) points on a conic, where we proceed via the method of descent, generally through reflection using the condition on x+x x + x^* obtained from Vieta's formulas. It is a special (simplified) case of various results on Pell's equation, continued fractions, and other results in quadratic fields.

For an interesting use that is often not mentioned, you can read up on Markov numbers, which are solutions to x2+y2+z2=3xyzx^2 + y^2 + z^2 = 3 xyz . If you continue reading through to the Markov Spectrum, you will start to see non-trivial uses of Vieta's jumping.

Calvin Lin Staff - 7 years, 10 months ago

Log in to reply

thank you very much calvin . But is there any specific book related to the concept, so that i can know more about it.

Tejas Kasetty - 7 years, 10 months ago

Log in to reply

Tejas - To go further, you need to write a post that demonstrates what you do understand about this idea, or why you are unable to follow up on what Calvin wrote. From your post it sounds like you are aware of Olympiad problems using this idea, but it is unclear if you have read the solutions and/or understand them.

Trying to interpret what Calvin said for you:

Calvin's second paragraph is giving you the other names that you can follow up on in more 'standard' literature, which mostly explains why you can't find a book titled "Vieta's Jumping" but you can find a book titled "Pell's Equation".

Doc MO - 7 years, 10 months ago

Log in to reply

@Doc Mo k i get it. thanks

Tejas Kasetty - 7 years, 10 months ago

This would be very useful to know for a certain 230 point number theory problem! I will add this to my solution, thank you.

Michael Tong - 7 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...