Volume of Tetrahedrons

Is the volume formula V=(1/3){base area}[height] valid for irregular tetrahedrons, or is it for regular tetrahedrons only?

If it is then can some of you prove it. ( Please don't use higher mathematics unless required, I'm just a 12th grader.)

#Geometry

Note by Vraj Mistry
4 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

It works for any tetrahedron, regular or not. Let's say that the cross section area is a square function from the apex

A(z)=kz2A(z) = k {z}^{2}

where kk is some constant, and zz is the distance from the apex to the cross section. Then we integrate this

0hkz2dz=13kh3=13(kh2)h=13Bh\displaystyle \int _{ 0 }^{ h }{ k{ z }^{ 2 } } dz=\frac { 1 }{ 3 } k { h }^{ 3 }=\frac { 1 }{ 3 } \left( k{ h }^{ 2 } \right)h =\frac { 1 }{ 3 } Bh

where B=A(h)B=A(h) is the area at distance z=hz=h from the apex. You should recognize the familiar pyramid formula, and you should realize that this works for any kind of base, provided that all the cross sections are similar in shape following the square function of the distance from the apex.

Michael Mendrin - 4 years, 5 months ago

Log in to reply

But, how is the base area a square function, couldn't it be anything else like dependent on two different variables rathere than one variable squared. For example: A(z1,z2)=k(z1)(z2)

Vraj Mistry - 4 years, 5 months ago

Log in to reply

If you have any 2D shape with a definite area, then similar shapes have areas equal to the first times the square of the ratio of size. For example, a given polygon may have area B, and the same thing but 1/3 the size will have area 1/9 B. The pyramid formula doesn't compute the constant kk itself, that depends on the particular shape that the base and all the cross sections have, which is supposed to be all similar.

Michael Mendrin - 4 years, 5 months ago

Log in to reply

@Michael Mendrin Thank you

Vraj Mistry - 4 years, 5 months ago

cool

Charlotte Milanese - 4 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...