This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
WE ARE HERE INTERESTED IN FINDING THE TIME REQUIRED TO EMPTY A TANK,IF A HOLE IS MADE AT THE BOTTOM OF THE TANK..........:::::::::
you have given that tank is filled with water....so the density of water is 1 gm/cc.......we would take this during our calculation.......ok………...now think that the cross sectional area of the hole is "a"........... area of the cross section of the tank is surely pi(r^2)=A (let us consider)........let at some instant of the time the level of liquid in the tank is “y”……..velocity of efflux at this instant of time would be……..v=sqrt(2gy)…………::::::::::
now , at this instant volume of liquid coming out of the hole per second is (dV/dt)=av…………..volume of liquid coming down in the tank per second is also (dV/dt)=A(-dy/dt)……….i think you have understood till now………….
Now, av =A(-dy/dt)………..asqrt(2gy)=A(-dy/dt)……….now integrate both sides taking same quantities in the same side….you would get…….integration [0 to t] dt= (-A/{asqrt(2g)})* integration[H to 0] y^(-.5) dy…...…………….so we get,........... t=(A/a)sqrt(2H/g) where A=pir^2....(as you gave)……:)(:……..PLEASE LET ME KNOW IF ANYTHING IS WRONG……..:|*
This is a hydraulics problem in orifice.To determine the time to empty the tank.Use Bernoulli's theorem v1^2/2g+p1/y+h1=v2^2+p2/y+h2.Since the container is open.The pressure is zero and to the nozzle because of atmospheric pressure.Where h1=h and h2=0 reference to the datum of orifice.neglect the velocity in v1 ,it will not effect your computation because v1 are to small velocity.You will get h=v1^2/2g equation 1.The discharges of water in the orifice looks like a projectile.It will occupy range or distance from the orifice .V1=X/t equation 2.substitute equation 1 to 2 then you will get the time to empty the tank.This is theoretical not including the head loss.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
WE ARE HERE INTERESTED IN FINDING THE TIME REQUIRED TO EMPTY A TANK,IF A HOLE IS MADE AT THE BOTTOM OF THE TANK..........::::::::: you have given that tank is filled with water....so the density of water is 1 gm/cc.......we would take this during our calculation.......ok………...now think that the cross sectional area of the hole is "a"........... area of the cross section of the tank is surely pi(r^2)=A (let us consider)........let at some instant of the time the level of liquid in the tank is “y”……..velocity of efflux at this instant of time would be……..v=sqrt(2gy)…………:::::::::: now , at this instant volume of liquid coming out of the hole per second is (dV/dt)=av…………..volume of liquid coming down in the tank per second is also (dV/dt)=A(-dy/dt)……….i think you have understood till now…………. Now, av =A(-dy/dt)………..asqrt(2gy)=A(-dy/dt)……….now integrate both sides taking same quantities in the same side….you would get…….integration [0 to t] dt= (-A/{asqrt(2g)})* integration[H to 0] y^(-.5) dy…...…………….so we get,........... t=(A/a)sqrt(2H/g) where A=pir^2....(as you gave)……:)(:……..PLEASE LET ME KNOW IF ANYTHING IS WRONG……..:|*
Log in to reply
Ya that's how it's derived. I was a bit lazy(I gave the answer late night) so just gave the answer without the derivation :P
That seems like the right answer using physical considerations.
I'am assuming that the area of cross section of the cylinder is A1 and A<<<<A1. Then the answer should be AA1×g2h
This is a hydraulics problem in orifice.To determine the time to empty the tank.Use Bernoulli's theorem v1^2/2g+p1/y+h1=v2^2+p2/y+h2.Since the container is open.The pressure is zero and to the nozzle because of atmospheric pressure.Where h1=h and h2=0 reference to the datum of orifice.neglect the velocity in v1 ,it will not effect your computation because v1 are to small velocity.You will get h=v1^2/2g equation 1.The discharges of water in the orifice looks like a projectile.It will occupy range or distance from the orifice .V1=X/t equation 2.substitute equation 1 to 2 then you will get the time to empty the tank.This is theoretical not including the head loss.
It is probably going to involve integrals. What have you tried so far?
assuming the upper height be 'h' and lower height be 'H-h' time = 2(H-h)/g whole under root