Why are the answers not same?

Here is a question,

An isosceles triangle is formed with thin rod of length l1{ l }_{ 1 } and coefficient of linear expansion α1{ \alpha }_{ 1 } as the base and two thin rods each of length l2{ l }_{ 2 } and coefficient of linear expansion α2{ \alpha }_{ 2 } as the two sides. If the distance between the apex and the midpoint of the base remain unchanged as the temperature is varied, find a relation between l1{ l }_{ 1 }, l2{ l }_{ 2 }, α1{ \alpha }_{ 1 }, α2{ \alpha }_{ 2 }.

Here is how I figured a relation,

Case I

l2=(l2)2(l12)2{ l }^{ 2 }=\quad { { \left( { l }_{ 2 } \right) } }^{ 2 }-{ { \left( \frac { { l }_{ 1 } }{ 2 } \right) } }^{ 2 }

Δl2=(Δl2)2(Δl12)2\Rightarrow { \Delta l }^{ 2 }=\quad { { \left( { \Delta l }_{ 2 } \right) } }^{ 2 }-{ { \left( \frac { { \Delta l }_{ 1 } }{ 2 } \right) } }^{ 2 } -----(1)(1)

Δl2=l2l2(1+α2ΔT)=l2α2ΔT{ \Delta l }_{ 2 }={ l }_{ 2 }-{ l }_{ 2 }\left( 1+{ \alpha }_{ 2 }\Delta T \right) ={ l }_{ 2 }{ \alpha }_{ 2 }\Delta T -----(2)(2)

Δl1=l1l1(1+α1ΔT)=l1α1ΔT{ \Delta l }_{ 1 }={ l }_{ 1 }-{ l }_{ 1 }\left( 1+{ \alpha }_{ 1 }\Delta T \right) ={ l }_{ 1 }{ \alpha }_{ 1 }\Delta T ----(3)(3)

(2)(2) & (3)(3) in (1)(1) and Since Δl=0\Delta l =0,

(l2α2ΔT)2=(l1α1ΔT2)2{ \left( { l }_{ 2 }{ \alpha }_{ 2 }\Delta T \right) }^{ 2 }={ \left( \frac { { l }_{ 1 }{ \alpha }_{ 1 }\Delta T }{ 2 } \right) }^{ 2 }

l2α2ΔT=l1α1ΔT2\Rightarrow { l }_{ 2 }{ \alpha }_{ 2 }\Delta T=\frac { { l }_{ 1 }{ \alpha }_{ 1 }\Delta T }{ 2 }

l1l2=2α2α1\boxed{\Rightarrow \frac { { l }_{ 1 } }{ { l }_{ 2 } } =2\frac { { \alpha }_{ 2 } }{ { \alpha }_{ 1 } }}

Case II

(l)2=(l2)2(l12)2\left( l \right) ^{ 2 }=\quad { { \left( { l }_{ 2 } \right) } }^{ 2 }-{ { \left( \frac { { l }_{ 1 } }{ 2 } \right) } }^{ 2 }

Differentiating with respect to T,

0=2l2dl2dT142l1dl1dT0=2{ l }_{ 2 }\frac { d{ l }_{ 2 } }{ dT } -\frac { 1 }{ 4 } 2{ l }_{ 1 }\frac { d{ l }_{ 1 } }{ dT }

We know dl2=l2α2ΔTd{ l }_{ 2 }={ { l }_{ 2 }\alpha }_{ 2 }\Delta T and dl1=l1α1ΔTd{ l }_{ 1 }={ { l }_{ 1 }\alpha }_{ 1 }\Delta T

l1.l1α12.ΔT=2l2l2α2ΔT\Rightarrow { l }_{ 1 }.\frac { { { l }_{ 1 }\alpha }_{ 1 } }{ 2 } .\Delta T=2{ { { l }_{ 2 }l }_{ 2 }\alpha }_{ 2 }\Delta T

l1l2=2α2α1\boxed{\Rightarrow \frac { { l }_{ 1 } }{ { l }_{ 2 } } =2\sqrt { \frac { { \alpha }_{ 2 } }{ { \alpha }_{ 1 } } } }

Why am I getting two answers?? Some one please help!

Note by Anandhu Raj
5 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

@Anandhu Raj The relation you wrote as equation 11 is incorrect. See, when you move from l2=l22l124l^{2} = {{ l }_{ 2 }}^{2} - \frac {{{ l }_{ 1 }}^{2}} { 4 } to the next step, you cant directly compare their changes the same way.

Since ll always remains constant, therefore, after sometime, the new relation will be:

l2=(l2+Δl2)2(l1+Δl1)24{ l }^{ 2 }={ ({ l }_{ 2 }+\Delta { l }_{ 2 }) }^{ 2 }-\frac { ({ { l }_{ 1 }+\Delta { l }_{ 1 } })^{ 2 } }{ 4 }

Now, equating these two lengths, you get:

l22l124=(l2+Δl2)2(l1+Δl1)24l2l124=l22+Δl22+2l2Δl2l1+Δl12+2l1Δl14{ { l }_{ 2 } }^{ 2 }-\frac { { { l }_{ 1 } }^{ 2 } }{ 4 } ={ ({ l }_{ 2 }+\Delta { l }_{ 2 }) }^{ 2 }-\frac { ({ { l }_{ 1 }+\Delta { l }_{ 1 } })^{ 2 } }{ 4 } \\ { l }^{ 2 }-\frac { { { l }_{ 1 } }^{ 2 } }{ 4 } ={ { l }_{ 2 } }^{ 2 }+{ \Delta { l }_{ 2 } }^{ 2 }+2{ l }_{ 2 }\Delta { l }_{ 2 }-\frac { { l }^{ 1 }+{ \Delta { l }_{ 1 } }^{ 2 }+2{ l }_{ 1 }{ \Delta l }_{ 1 } }{ 4 }

Now, since, we consider Δl1 \Delta { l }_{ 1 } and Δl2 \Delta { l }_{ 2 } to be negligible, their squares are neglected. Hence, we are left with the relation:

4l2Δl2=l1Δl14{ l }_{ 2 }\Delta { l }_{ 2 }={ l }_{ 1 }\Delta { l }_{ 1 }

Now, using the relation, Δl1=l1α1ΔT\Delta { l }_{ 1 }={ l }_{ 1 }{ \alpha }_{ 1 }\Delta T and Δl2=l2α2ΔT\Delta { l }_{ 2 }={ l }_{ 2 }{ \alpha }_{ 2 }\Delta T, we get:

4l2α2=l12α1l1l2=2α2α14{ l }^{ 2 }{ { \alpha }_{ 2 } }={ { l }_{ 1 } }^{ 2 }{ \alpha }_{ 1 }\\ \frac { { l }_{ 1 } }{ { l }_{ 2 } } =2\sqrt { \frac { { \alpha }_{ 2 } }{ { \alpha }_{ 1 } } }

:)

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

Thanks! :)

Anandhu Raj - 5 years, 3 months ago

@Abhineet Nayyar

Rajdeep Dhingra - 5 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...