ya(n) failed, what about ya_2(n).

view my set. Lets recall Aa(n)={1,if n is prime0,otherwiseAa(n)=\begin{cases} 1&,\text{if n is prime}\\0&,\text{otherwise}\end{cases}.\ we define a new function: ya2(n)=(Aaμ)(n)=pnμ(n/p)ya_2(n)=(Aa*|\mu|)(n)=\sum_{p|n} |\mu(n/p)| We again make 3 cases

1.n is square free. we easily have ya2(n)=ω(n)μ(n)ya_2(n)=\omega(n)|\mu(n)|

2.n=p1p2p3.....pk2n=p_1p_2p_3.....p_k^2. in that case möbius will be zero everywhere except prime divisor bieng pkp_k in which case it will becom |-1|=1. so the summation will be ya2(n)=1ya_2(n)=1

  1. ya2(n)=0ya_2(n)=0 otherwise.

more formally ya2(n)={ω(n)μ(n),n is square free1,n has one squared prime factor0,otherwiseya_2(n)=\begin{cases} \omega(n)|\mu(n)|&,\text{n is square free}\\1 &, \text{n has one squared prime factor}\\0 &,\text{otherwise}\end{cases} yes! this is great actually. convoluting both sides with λ\lambda we have Aa=ya2λAa=ya_2*\lambda n=1Aa(n)ns=n=1ya2(n)nsn=1λ(n)ns\sum_{n=1}^\infty \dfrac{Aa(n)}{n^s}=\sum_{n=1}^\infty \dfrac{ya_2(n)}{n^s}\sum_{n=1}^\infty \dfrac{\lambda(n)}{n^s} P(s)=ζ(2s)ζ(s)n=1ya2(n)nsP(s)=\dfrac{\zeta(2s)}{\zeta(s)}\sum_{n=1}^\infty \dfrac{ya_2(n)}{n^s} We will compute n=1Aa(n)ns\sum_{n=1}^\infty \dfrac{Aa(n)}{n^s} in the next note.

dirichlet series and dirichlet convolution used here.

#Calculus

Note by Aareyan Manzoor
5 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Since these two functions are so similar, I'm guessing we will run into the same problem if we don't change the method we are using.

Here's what I can get using previous method (in part 2)

n=1ya2(n)ns=n=1μ(n)ω(n)ns+p  primep∤nμ(n)p2sns\sum _{n=1}^{ \infty}\frac{ya_2\left(n\right)}{n^s}=\sum_{n=1}^{\infty}\frac{|\mu(n)|\omega(n)}{n^s}+\sum _{p\ \text{ prime}}^{ }\sum _{p\not\mid n}\frac{|\mu(n)|}{p^{2s}n^s}

p  primep∤nμ(n)p2sns=ζ(s)ζ(2s)(P(s)p1ps+1)\sum _{p\ \text{ prime}}^{ }\sum _{p\not\mid n}\frac{|\mu(n)|}{p^{2s}n^s}=\frac{\zeta(s)}{\zeta(2s)}\left(P\left(s\right)-\sum _p^{ }\frac{1}{p^s+1}\right) **

For the second sum, I suggest trying to evaluate:

p  primep∤nμ(n)p2sns=n=1μ(n)nspn1ps=n=1μ(n)nsp∤n1p2s\sum _{p\ \text{ prime}}^{ }\sum _{p\not\mid n}\frac{|\mu(n)|}{p^{2s}n^s}=\sum_{n=1}^{\infty}\frac{|\mu(n)|}{n^s}\sum_{p\mid n}\frac{1}{p^s}=\sum_{n=1}^{\infty}\frac{|\mu(n)|}{n^s}\sum_{p\not\mid n}\frac{1}{p^{2s}}**

Also from methods in part 2,

n=1μ(n)nspn1ps=P(2s)ζ(s)ζ(2s)n=1μ(n)nspn1p2s\sum_{n=1}^{\infty}\frac{|\mu(n)|}{n^s}\sum_{p\mid n}\frac{1}{p^s}=\frac{P(2s)\zeta(s)}{\zeta(2s)}-\sum_{n=1}^{\infty}\frac{|\mu(n)|}{n^s}\sum_{p\mid n}\frac{1}{p^{2s}}

Those with ** have been verified numerically.

For the last equation, I am not sure if it matches numerically but it most probably is.

Julian Poon - 5 years, 4 months ago

Log in to reply

The second part was rather easy. my main concern is the first. i have found that ωμ1=ω(μ1)2\omega|\mu|*1=\dfrac{\omega (|\mu|*1)}{2} which is kind of cool.

Aareyan Manzoor - 5 years, 4 months ago

Log in to reply

I'm getting

ωμ1(n)=k=0ω(n)k(ω(n)k)=2ω(n)1ω(n)\omega|\mu|*1(n)=\sum_{k=0}^{\omega(n)}k\left( \begin{matrix}\omega(n) \\ k \end{matrix} \right) =2^{\omega(n)-1}\omega(n)

Going by the same logic in the second note,

ωμμ(n)=k=0ω(n)k(1)ω(n)k(ω(n)k)={1 if n=pa0 otherwise\omega|\mu|*\mu(n)=\sum_{k=0}^{\omega(n)}k*(-1)^{\omega(n)-k}\left( \begin{matrix}\omega(n) \\ k \end{matrix} \right)=\begin{cases} 1 \text{ if }n=p^a \\ 0 \text{ otherwise} \end{cases}

Assuming what I did above is correct, I should get:

1ζ(s)n=1μ(n)ω(n)ns=p1ps1\frac{1}{\zeta(s)}\sum_{n=1}^{\infty}\frac{|\mu(n)|\omega(n)}{n^s}=\sum_p\frac{1}{p^s-1}

Again, the working above has not been verified numerically.

EDIT: Oh yeah, μ1=2ω(n)|\mu|*1=2^{\omega(n)}

EDIT again: Also, using the fact that

1x+1=1x12x21\frac{1}{x+1}=\frac{1}{x-1}-\frac{2}{x^2-1}

p1ps+1=p1ps1p2p2s1\sum_p\frac{1}{p^s+1}=\sum_p\frac{1}{p^s-1}-\sum_p\frac{2}{p^{2s}-1}

Julian Poon - 5 years, 4 months ago

Log in to reply

@Julian Poon how do you always find a good function to convolute with! Lets see evaluating this ωμ=L1\omega|\mu|=L*1 where L is the function you defined. so: n1ωμns=ζ(s)prime1ps1\sum_{n≥1} \dfrac{\omega|\mu|}{n^s}=\zeta(s)\sum_{prime} \dfrac{1}{p^s-1} Edit didnt see your edit.

Aareyan Manzoor - 5 years, 4 months ago

Log in to reply

@Aareyan Manzoor Ah well Im stuck...

Julian Poon - 5 years, 4 months ago

Log in to reply

@Julian Poon I think after evaluating we will get P(s)=P(s)P(s)=P(s) again.

Aareyan Manzoor - 5 years, 4 months ago

Log in to reply

@Aareyan Manzoor I think so too, hopefully we don't

Julian Poon - 5 years, 4 months ago

Log in to reply

@Julian Poon but something interesting is that D(L;s)=p1ps1D(L;s)=\sum_p \dfrac{1}{p^s-1} and L=ωμμ=ωμ1L=\omega|\mu|*\mu=\omega\mu*1 i think my target changed from finding an equation of primezeta to D(L;s)D(L;s) after the second note.

Aareyan Manzoor - 5 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...