1 more day to Valentine

Algebra Level 5

( a 2 a b + b 2 ) ( b 2 b c + c 2 ) ( c 2 a c + a 2 ) m n \large (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ac+a^2)\leq\frac{m}{n} If a , b a,b and c c are non-negative reals satisfying a + b + c = 2 a+b+c=2 and m m and n n are coprime positive integers, find m + n m+n .


The answer is 499.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Feb 13, 2016

Call the expression above is P By applying AM-GM we have: P a 2 b 2 ( a 2 a b + b 2 ) = 4 9 ( 3 2 a b + 3 2 a b + a 2 a b + b 2 3 ) P\leq a^2b^2(a^2-ab+b^2)=\frac{4}{9}(\frac{\frac{3}{2}ab+\frac{3}{2}ab+a^2-ab+b^2}{3}) = 4 9 ( a + b ) 6 27 4 ( a + b + c ) 6 243 = 256 243 = m n =\frac{4}{9}\frac{(a+b)^6}{27}\leq \frac{4(a+b+c)^6}{243}=\frac{256}{243} =\frac{m}{n} So m + n = 499 \LARGE m+n=499

Another way Without losing the generally,we may assume that c=min{a,b,c} a 2 a c + c 2 ( a + c 2 ) 2 a^2-ac+c^2\leq (a+\frac{c}{2})^2 b 2 b c + c 2 ( b + c 2 ) 2 b^2-bc+c^2\leq (b+\frac{c}{2})^2 a 2 a b + b 2 ( a + c 2 ) 2 ( a + c 2 ) ( b + c 2 ) + ( b + c 2 ) 2 a^2-ab+b^2\leq (a+\frac{c}{2})^2-(a+\frac{c}{2})(b+\frac{c}{2})+(b+\frac{c}{2})^2 Let x = a + c 2 ; y = b + c 2 x=a+\frac{c}{2};y=b+\frac{c}{2} x + y = a + b + c = 2 x+y=a+b+c=2 P x 2 y 2 ( x 2 x y + y 2 ) = x 2 ( 2 x ) 2 [ x 2 x ( 2 x ) + ( 2 x ) 2 ] P\leq x^2y^2(x^2-xy+y^2)=x^2(2-x)^2[x^2-x(2-x)+(2-x)^2] = 3 x 6 12 x 5 + 36 x 4 40 x 3 + 16 x 2 256 243 = m n =3x^6-12x^5+36x^4-40x^3+16x^2\leq \frac{256}{243}=\frac{m}{n} So m + n = 499 \LARGE m+n=499

I concur with @Gurīdo Cuong . Do you mind explaining the first part ?(How do you use AM-GM in such mind-boggling way).

= 36 x 6 21 x 5 + 57 x 4 72 x 3 + 36 x 2 256 243 = m n =36x^6-21x^5+57x^4-72x^3+36x^2\leq \frac{256}{243}=\frac{m}{n}

Why??

Also,

P x 2 y 2 ( x 2 x y + y 2 ) = x 2 ( 2 x 2 ) [ x 2 x ( 2 x ) + ( 2 x ) 2 ] P\leq x^2y^2(x^2-xy+y^2)=x^2(2-x^2)[x^2-x(2-x)+(2-x)^2]

I believe you meant

P x 2 y 2 ( x 2 x y + y 2 ) = x 2 ( 2 x ) 2 [ x 2 x ( 2 x ) + ( 2 x ) 2 ] P\leq x^2y^2(x^2-xy+y^2)=x^2(2-x)^2[x^2-x(2-x)+(2-x)^2]

ZK LIn - 5 years, 4 months ago

Log in to reply

I have fixed my problem.Maybe I'm wrong while I am typing

Son Nguyen - 5 years, 4 months ago

Log in to reply

Expanding x 2 ( 2 x ) 2 [ x 2 x ( 2 x ) + ( 2 x ) 2 ] x^2(2-x)^2[x^2-x(2-x)+(2-x)^2] gives you 3 x 6 12 x 5 + 36 x 4 40 x 3 + 1 6 2 3x^6-12x^5+36x^4-40x^3+16^2 .

P C - 5 years, 4 months ago

Log in to reply

@P C After expanding everything and clearing terms,

a 2 a b + b 2 ( a + c 2 ) 2 ( a + c 2 ) ( b + c 2 ) + ( b + c 2 ) 2 a^2-ab+b^2\leq (a+\frac{c}{2})^2-(a+\frac{c}{2})(b+\frac{c}{2})+(b+\frac{c}{2})^2

a 2 a b + b 2 a 2 + c 2 4 + c a a b a c 2 b c 2 c 2 4 + b 2 + c 2 4 + b c a^{2}-ab+b^{2} \leq a^{2}+\frac{c^{2}}{4}+ca-ab-\frac{ac}{2}-\frac{bc}{2}-\frac{c^{2}}{4}+b^{2}+\frac{c^{2}}{4}+bc

0 a c 2 + b c 2 + c 2 4 0\leq \frac{ac}{2}+\frac{bc}{2}+\frac{c^{2}}{4} happens to be correct.

However, the way the solution is phrased is easy to cause misunderstanding. Initially, I also struggled to see why the above inequality is true.

ZK LIn - 5 years, 4 months ago

can you further explain the AM-GM way please

P C - 5 years, 4 months ago

Log in to reply

Without losing the generally,we may assume that c=min{a,b,c} then using AM-GM

Son Nguyen - 5 years, 4 months ago

Log in to reply

Wow, you guys really love to solve inequalities problem. You should create a set that have all these questions!

By the way, @Gurīdo Cuong @MS HT @ZK LIn are you guys on Slack as well? It is a forum for most of the active users on this site, where all we do is talk about math and science. Plus, it's free as well! You should try it out.

Pi Han Goh - 5 years, 4 months ago

Log in to reply

@Pi Han Goh yeap I will try

Son Nguyen - 5 years, 4 months ago

@Pi Han Goh Sure, sounds like fun! I have quite a lot of free time now, so I will try.

ZK LIn - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...