A Complicated Logarithmic Limit!

Calculus Level 5

x n = k = 3 n 1 + 1 ( k 1 ) 2 + 1 k 2 \large {x_n = \displaystyle \sum_{k=3}^n \sqrt{1 + \dfrac{1}{(k-1)^2} + \dfrac{1}{k^2}}}

Let x n x_n shown above be defined for n n , where n n belongs to the set of natural numbers. Then find the value of lim n ln ( x n ) n { \displaystyle\lim_{n \to \infty}\dfrac{\ln(x_n)}{n}} .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Satyajit Mohanty
Jul 10, 2015

@Satyajit Mohanty What have you done in the last step? Can you please explain?

Ankit Kumar Jain - 3 years, 1 month ago

@Satyajit Mohanty , is there any easy form for one to find the closed-form sum in terms of n n ? You're a truly great mathematician.

Mikael Marcondes - 5 years, 11 months ago

Log in to reply

I couldn't understand your question!

Satyajit Mohanty - 5 years, 11 months ago

Log in to reply

Can the sum that defines x n x_n , which is expressed in terms of summands in function of natural numbers until n n , be expressed only in function of n n itself? How does one find this form for express the sum?

Mikael Marcondes - 5 years, 11 months ago

Log in to reply

@Mikael Marcondes You can check this solution. I've mentioned it :)

Satyajit Mohanty - 5 years, 11 months ago

Log in to reply

@Satyajit Mohanty I've saw you transformed the sum, but I couldn't understand this step... I always get unsecure using limits and would like to treat problems like these in a more algebraic sense...

Mikael Marcondes - 5 years, 11 months ago

k = 3 n 1 + 1 ( k 1 ) 2 + 1 k 2 \sum_{k=3}^{n} \sqrt{1+\dfrac{1}{(k-1)^2}+\dfrac{1}{k^2} }

k = 3 n ( ( k 1 ) 2 + 1 ) k 2 + ( k 1 ) 2 k 2 ( k 1 ) 2 \sum_{k=3}^{n} \sqrt{\dfrac{((k-1)^2+1)k^2+(k-1)^2}{k^2(k-1)^2}}

k = 3 n k 4 2 k 3 + 3 k 2 2 k + 1 k 2 ( k 1 ) 2 \sum_{k=3}^{n} \sqrt{\dfrac{k^4-2k^3+3k^2-2k+1}{k^2(k-1)^2}}

k = 3 n ( k 2 k + 1 ) 2 k 2 ( k 1 ) 2 \sum_{k=3}^{n} \sqrt{\dfrac{(k^2-k+1)^2}{k^2(k-1)^2}}

k = 3 n ( k 2 k + 1 ) k ( k 1 ) \sum_{k=3}^{n} \dfrac{(k^2-k+1)}{k(k-1)}

k = 3 n 1 + 1 k ( k 1 ) \sum_{k=3}^{n} 1+\dfrac{1}{k(k-1)}

n 3 + k = 3 n 1 k 1 1 k n-3+\sum_{k=3}^{n} \dfrac{1}{k-1}-\dfrac{1}{k} n 3 + 1 2 1 n n-3+ \dfrac{1}{2}-\dfrac{1}{n} then

lim n ln ( n 5 2 1 n ) n {\displaystyle\lim_{n\to\infty}\dfrac{\ln(n-\dfrac{5}{2}-\dfrac{1}{n})}{n}} = \dfrac{\infty}{\infty}

Using L'Hopital rule lim n 1 + 1 n 2 n 5 2 1 n {\displaystyle\lim_{n\to\infty}\dfrac{1+\dfrac{1}{n^2}}{n-\dfrac{5}{2}-\dfrac{1}{n}}} = 1 = 0 \dfrac{1}{\infty}= 0

Mikael Marcondes
Jul 13, 2015

For some n N n \in \mathbb{N} , as n ­ n­ \rightarrow \infty , we would have:

L = lim n l n ( x n ) n lim n l n ( x n + 1 ) ( n + 1 ) \displaystyle L=\lim_{n \to \infty} \frac{ln(x_n)}{n} \approx \lim_{n \to \infty} \frac {ln(x_{n+1})}{(n+1)}

Expressing x n + 1 x_{n+1} in terms of x n x_n , follows:

x n + 1 = x n + 1 + 1 n 2 + 1 ( n + 1 ) 2 \displaystyle x_{n+1}=x_n+\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}

Handling terms and plugging one on another, we get:

lim n n . l n ( x n ) + l n ( x n ) lim n n . l n ( x n + 1 ) \displaystyle \lim_{n \to \infty} \ n.ln(x_n)+ln(x_n) \approx \lim_{n \to \infty} \ n.ln(x_{n+1})\implies

L = lim n l n ( x n ) n lim n l n ( x n + 1 x n ) \displaystyle \implies L=\lim_{n \to \infty} \frac{ln(x_n)}{n} \approx \lim_{n \to \infty} ln\left(\frac{x_{n+1}}{x_n}\right)\implies

L lim n l n ( x n + 1 + 1 n 2 + 1 ( n + 1 ) 2 x n ) \displaystyle \implies L \approx \lim_{n \to \infty} ln\left(\frac{x_n+\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}}{x_n}\right)

One could easily use D'Alembert criterion and prove that { x n } \{x_n\} diverges (i. e., the sequence diverges). Thus, lim n x n = \lim_{n \to \infty} x_n=\infty . Then, L-limit becomes:

L lim n l n ( 1 + 1 + 1 n 2 + 1 ( n + 1 ) 2 x n ) \displaystyle \implies L \approx \lim_{n \to \infty} ln\left(1+\frac{\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}}{x_n}\right) \implies

L lim n l n ( 1 + 1 + 0 + 0 ) L = 0 \displaystyle \implies L \approx \lim_{n \to \infty} ln\left(1+\frac{\sqrt{1+0+0}}{\infty}\right) \implies \boxed{L=0}

\blacksquare

Aakash Khandelwal
Jul 11, 2015

Only difficulty is to remove square root over kth term.this can be done as follows

for less complexity take lcm and take out (k-1) out of square root.

deviding numerator again by k^2 we get kth term as 1+1/k-1+1/k .

find xn by opening summation and apply limits

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...