#17 of March 2015 Grade 11 - Natural Sciences & Liberal Arts CSAT (Korean SAT) Mock test

Algebra Level 4

A sequence { a n } \{a_n\} satisfies a 1 = 1 a_1=1 and a n + 1 n + 2 = a n n + 1 2 \dfrac{a_{n+1}}{n+2}=\dfrac{a_n}{n}+\dfrac{1}{2} for all natural numbers n . n.

Let S = 1 3 + 1 4 + 1 5 + + 1 102 . S = \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\cdots+\dfrac{1}{102}.

Find the value of a 103 5356 S . \boxed{a_{103}-5356S}.


This problem has been modified by me, and is a part of <Grade 11 CSAT Mock test> series .


The answer is 8086.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Aug 2, 2017

Divide both sides by n + 1 n+1 and you see that

a n + 1 ( n + 1 ) ( n + 2 ) = a n n ( n + 1 ) + 1 2 ( n + 1 ) . \dfrac{a_{n+1}}{(n+1)(n+2)}=\dfrac{a_n}{n(n+1)}+\dfrac{1}{2(n+1)}.

Then define a n n ( n + 1 ) = b n . \dfrac{a_n}{n(n+1)}=b_n.

b n + 1 = b n + 1 2 ( n + 1 ) , b_{n+1}=b_n+\dfrac{1}{2(n+1)}, and b 1 = a 1 2 = 1 2 . b_1=\dfrac{a_1}{2}=\dfrac{1}{2}.


Substitute n = 1 , 2 , 3 , , k 1 n=1,~2,~3,~\cdots,~k-1 and then add them sides by sides.

b k = b 1 + 1 2 ( 1 2 + 1 3 + 1 4 + + 1 k ) = 1 2 ( 1 + 1 2 + 1 3 + + 1 k ) ( k 2 ) \begin{aligned} b_k &=b_1+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+~ \cdots ~+\dfrac{1}{k}\right) \\ &=\dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+~ \cdots ~+\dfrac{1}{k}\right)~(k\ge2) \end{aligned}

We see that this also holds for k = 1 , k=1, as b 1 = 1 2 . b_1=\dfrac{1}{2}.

Therefore,

a n = n ( n + 1 ) b n = n ( n + 1 ) 2 ( 1 + 1 2 + 1 3 + + 1 n ) . a_n=n(n+1)b_n=\dfrac{n(n+1)}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+~\cdots~+\dfrac{1}{n}\right).


a 103 = 103 × 104 2 ( 1 + 1 2 + 1 3 + + 1 103 ) = 5356 ( 1 + 1 2 + S + 1 103 ) a_{103}=\dfrac{103\times104}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+~\cdots~+\dfrac{1}{103}\right)=5356\left(1+\dfrac{1}{2}+S+\dfrac{1}{103}\right)

a 103 5356 S = 5356 ( 1 + 1 2 + 1 103 ) = 5356 + 2678 + 52 = 8086 . \therefore~a_{103}-5356S=5356\left(1+\dfrac{1}{2}+\dfrac{1}{103}\right)=5356+2678+52=\boxed{8086}.

What is meant by adding "sides by sides"? Also I'm not understanding how u got that step just after adding sides by sides...can u please elaborate it little bit and give?

Skanda Prasad - 3 years, 8 months ago

Log in to reply

b 2 = b 1 + 1 2 2 b 3 = b 2 + 1 2 3 b 4 = b 3 + 1 2 4 b 5 = b 4 + 1 2 5 . . . b k = b k 1 + 1 2 k b_2=b_1+\dfrac{1}{2\cdot2} \\ b_3=b_2+\dfrac{1}{2\cdot3} \\ b_4=b_3+\dfrac{1}{2\cdot4} \\ b_5=b_4+\dfrac{1}{2\cdot5} \\ ... \\ b_k=b_{k-1}+\dfrac{1}{2\cdot k}

Add them all, and you get

b 2 + b 3 + b 4 + + b k = b 1 + b 2 + b 3 + b k 1 + 1 2 ( 1 2 + 1 3 + 1 4 + + 1 k ) b_2+b_3+b_4+~\cdots~+b_k=b_1+b_2+b_3+~\cdots b_{k-1}+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+~\cdots~+\dfrac{1}{k}\right)

Now we can eliminate b 2 + b 3 + b 4 + + b k 1 b_2+b_3+b_4+~\cdots~+b_{k-1} from each side.

b k = b 1 + 1 2 ( 1 2 + 1 3 + 1 4 + + 1 k ) . \boxed{b_k=b_1+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+~\cdots~+\dfrac{1}{k}\right)}.

Boi (보이) - 3 years, 8 months ago

Log in to reply

Oh, ok... Thanks a lot! Great solution, though!

Skanda Prasad - 3 years, 8 months ago

Log in to reply

@Skanda Prasad No problem, and thanks! ^^

Boi (보이) - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...