1729 followers problem (a bit late may be)

Calculus Level 5

x = 1 1729 [ Γ ( 1 + 2 x 2 ) Γ ( 1 2 x 2 ) ] \large\sum_{x=1}^{1729} \left[\Gamma\left(\dfrac{1+2x}{2}\right)\Gamma\left(\dfrac{1-2x}{2}\right)\right]

Simplify the above summation and give your answer to correct four decimal places.

Clarification: [ ] [\cdot] does not denote greatest integer function; they are just square brackets. Also, Γ ( n ) \Gamma(n) is the gamma function .

Bonus Question: Find the value of x = 1 1730 [ Γ ( 1 + 2 x 2 ) Γ ( 1 2 x 2 ) ] . \displaystyle\sum_{x=1}^{1730} \left[\Gamma\left(\dfrac{1+2x}{2}\right)\Gamma\left(\dfrac{1-2x}{2}\right)\right].


The answer is -3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nihar Mahajan
Mar 3, 2016

First note that 1 1 + 2 x 2 = 1 2 x 2 1-\dfrac{1+2x}{2} = \dfrac{1-2x}{2} .

Now we know the Euler's Reflection Formula : Γ ( n ) Γ ( 1 n ) = π sin ( n π ) \Gamma(n)\Gamma(1-n) = \dfrac{\pi}{\sin(n\pi)} . So in this problem we have n = 1 + 2 x 2 n=\dfrac{1+2x}{2} . So our summation changes to:

x = 1 1729 π sin ( ( 2 x + 1 ) π 2 ) = π x = 1 1728 1 sin ( ( 2 x + 1 ) π 2 ) + π sin ( 3459 π 2 ) \sum_{x=1}^{1729} \dfrac{\pi}{\sin\left(\frac{(2x+1)\pi}{2}\right)} = \pi\sum_{x=1}^{1728} \dfrac{1}{\sin\left(\frac{(2x+1)\pi}{2}\right)}+\dfrac{\pi}{\sin\left(\frac{3459\pi}{2}\right)}

= π [ 1 sin π 2 + 1 sin 3 π 2 + 1 sin 5 π 2 + 1 sin 7 π 2 + + 1 sin 3457 π 2 ] + π sin ( 3 π 2 ) =\pi\left[\dfrac{1}{\sin\dfrac{\pi}{2}}+\dfrac{1}{\sin\dfrac{3\pi}{2}}+\dfrac{1}{\sin\dfrac{5\pi}{2}}+\dfrac{1}{\sin\dfrac{7\pi}{2}}+\dots + \dfrac{1}{\sin\dfrac{3457\pi}{2}}\right] + \dfrac{\pi}{\sin\left(\frac{3\pi}{2}\right)}

Now since sin ( π + x ) = sin ( x ) \sin(\pi+x)=-\sin(x) , we have sin ( n π 2 ) = sin ( ( n + 2 ) π 2 ) \sin\left(n\dfrac{\pi}{2}\right)=-\sin\left((n+2)\dfrac{\pi}{2}\right) and hence , ( 1 sin π 2 + 1 sin 3 π 2 ) \left(\dfrac{1}{\sin\dfrac{\pi}{2}}+\dfrac{1}{\sin\dfrac{3\pi}{2}}\right) , ( 1 sin 5 π 2 + 1 sin 7 π 2 ) \left(\dfrac{1}{\sin\dfrac{5\pi}{2}}+\dfrac{1}{\sin\dfrac{7\pi}{2}}\right) , and so on till ( 1 sin 3455 π 2 + 1 sin 3457 π 2 ) \left(\dfrac{1}{\sin\dfrac{3455\pi}{2}}+\dfrac{1}{\sin\dfrac{3457\pi}{2}}\right) ALL EQUAL ZERO!. Hence we have x = 1 1728 1 sin ( ( 2 x + 1 ) π 2 ) = 0 \sum_{x=1}^{1728} \dfrac{1}{\sin\left(\frac{(2x+1)\pi}{2}\right)} = 0 .Also π sin ( 3 π 2 ) = π \dfrac{\pi}{\sin\left(\frac{3\pi}{2}\right)} = -\pi , hence our summation becomes:

= π × 0 π = π 3.1415 =\pi \times 0 -\pi = -\pi\approx\boxed{-3.1415}

Hint to Bonus Question: 1730 1730 is an even number.

Moderator note:

Good detailed explanation, once we use the Euler's Reflection Formula.

This comes in calculus

Aditya Kumar - 5 years, 3 months ago

Log in to reply

Its calculus due to ERF , its geometry due to trigonometry , its algebra due to summation. Damn!

Nihar Mahajan - 5 years, 3 months ago

Log in to reply

Lol. if u don't use calculus u won't be able to use geometry.

Aditya Kumar - 5 years, 3 months ago

Log in to reply

@Aditya Kumar I have no problem , changed to calculus.

Nihar Mahajan - 5 years, 3 months ago

Suppose one do not know ERF then how can he do this

Aakash Khandelwal - 5 years, 3 months ago

Log in to reply

@Aakash Khandelwal Suppose one do not know trigonometry then how can he do this

Nihar Mahajan - 5 years, 3 months ago

@Aakash Khandelwal If one doesn't know Euler's Reflection Formula he may learn it and apply it.

Aditya Kumar - 5 years, 3 months ago

Why did this get level 5? Haha!

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

May be many people dont know ERF...

Nihar Mahajan - 5 years, 3 months ago

your solution is cute,but this is way easier if you use

Γ ( 1 2 + x ) = ( 2 n ) ! 4 n n ! π \Gamma(\frac{1}{2}+x) = \dfrac{(2n)!}{4^n n!} \sqrt{\pi} and Γ ( 1 2 x ) = ( 4 n ) n ! ( 2 n ) ! π \Gamma(\frac{1}{2}-x) = \dfrac{(-4^n) n!}{(2n)!} \sqrt{\pi}

Then Your summation melts down to n = 1 1729 ( 1 ) n π = π \large\sum_{n=1}^{1729} (-1)^n \pi = -\pi

Parth Lohomi - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...