2000 9s

999 99 9 3 Number of 9s = 2000 \underbrace{999\dots999^3}_{\text{Number of 9s }= \ 2000 } Find the sum of the digits of the number above.


The answer is 36000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I observed a pattern. Let S ( n ) S(n) denotes the sum of the digit of n n .

S ( 9 3 ) = S ( 729 ) = 18 S ( 9 9 3 ) = S ( 970 , 299 ) = 36 S ( 99 9 3 ) = S ( 997 , 002 , 999 ) = 54 \begin{aligned} & S(9^3) = S(729) & = 18 \\ & S(99^3) = S(970,299) & = 36 \\ & S(999^3) = S(997,002,999) & = 54 \end{aligned}

We can conclude that S ( 999...99 9 3 number of 9s = n ) = 18 n S\left( \underbrace{999...999^3}_{\small\text{number of 9s} = n }\right) = 18n .

For n = 2000 n = 2000 , the answer is 18 × 2000 = 36000 18 \times 2000 = 36000 .


Proof

This is the generalozation of Chew-Seong Cheong's and Áron Bán-Szabó's solution.

Consider the expression below.

99...9 9 3 number of 9s = n = ( 1 0 n 1 ) 3 = 1 0 3 n 3 1 0 2 n + 3 1 0 n 1 = 100..00 number of 0s = 3 n 300...00 number of 0s = 2 n + 300...00 number of 0s = n 1 = 99...99 n 1 times 7 00...00 2 n times + 2 99...99 n times \begin{aligned} \underbrace{99...99^3}_{\text{number of 9s} = n} & = (10^n - 1)^3 \\ & = 10^{3n} - 3 \cdot 10^{2n} + 3 \cdot 10^n - 1\\ & = \underbrace{100..00}_{\small \text{number of 0s} = 3n} - \underbrace{300...00}_{\small \text{number of 0s} = 2n} + \underbrace{300...00}_{\small \text{number of 0s} = n} - 1 \\ & = \overline{ \underbrace{99...99}_{\small n-1 \space \text{times}} 7 \underbrace{00...00}_{\small 2n \space \text{times}} } + \overline{ 2\underbrace{99...99}_{\small n \space \text{times}}} \end{aligned}

Then,

S ( 99...9 9 3 number of 9s = n ) = 9 ( n 1 ) + 7 + 2 + 9 n = 9 ( n 1 ) + 9 + 9 n = 9 ( n 1 + 1 + n ) = 9 ( 2 n ) = 18 n \begin{aligned} S\left(\underbrace{99...99^3}_{ \small \text{number of 9s} = n} \right) & = 9( n - 1 ) + 7 + 2 + 9n \\ & = 9( n -1 ) + 9 + 9n \\ & = 9(n-1 + 1 + n) \\ & = 9(2n) = 18n \end{aligned}

Hence, proved.

@Fidel Simanjuntak nice observation there! :) To complete the solution you need to prove that such pattern works for all positive integers n n (perhaps by induction).

Jaydee Lucero - 3 years, 11 months ago

Log in to reply

@Jaydee Lucero I'm still trying to prove it. Otherwise, I'm still waiting someone to give a proof.

Fidel Simanjuntak - 3 years, 11 months ago

Log in to reply

@Fidel Simanjuntak I've seen your proof now. Nice solution :)

Jaydee Lucero - 3 years, 11 months ago

Log in to reply

@Jaydee Lucero Thank you! Glad to hear that!

Fidel Simanjuntak - 3 years, 11 months ago

Similar solution with Áron Bán-Szabó 's

N = 999...99 9 3 Number of 9s = 2000 = ( 1 0 2000 1 ) 3 = 1 0 6000 3 1 0 4000 + 3 1 0 2000 1 = 999...999 1999 7 000...000 4000 + 2 999...999 2000 = 999...999 1999 7 000...000 1999 2 999...999 2000 \begin{aligned} N & = \underbrace{999...999^3}_{\text{Number of 9s }= \ 2000} \\ & = \left(10^{2000}-1\right)^3 \\ & = \color{#3D99F6} 10^{6000} - 3\cdot 10^{4000} + \color{#D61F06} 3\cdot 10^{2000} - 1 \\ & = \color{#3D99F6}\underbrace{999...999}_{1999}7\underbrace{000...000}_{4000} + \color{#D61F06} 2\underbrace{999...999}_{2000} \\ & = \underbrace{999...999}_{1999}7\underbrace{000...000}_{1999} 2 \underbrace{999...999}_{2000} \end{aligned}

Therefore, the sum of digits of N N , S n = 9 2999 + 7 + 2 = 36000 S_n = 9 \cdot 2999 + 7 + 2 = \boxed{36000} .

@Chew-Seong Cheong I did the same. :)

Jaydee Lucero - 3 years, 11 months ago

999 99 2000 number of 9 = 1 0 2000 1 \underbrace{999\dots99}_{2000\space\text{number of}\space9}=10^{2000}-1 ( 1 0 2000 1 ) 3 = 1 0 6000 3 1 0 4000 + 3 1 0 2000 1 \Rightarrow (10^{2000}-1)^3=10^{6000}-3*10^{4000}+3*10^{2000}-1 The ( 3 1 0 2000 1 ) (3*10^{2000}-1) number's first digit is 2 2 , the others are 9 9 . From the back the first 4000 4000 digit are 0 0 in ( 1 0 6000 3 1 0 4000 ) (10^{6000}-3*10^{4000}) , then the 4001. 4001. digit from the bag is 7 7 , then from the 4002. 4002. digit to the 6000. 6000. digit all of the digits are 9 9 s. So the answer is: 2000 9 + 2 + 7 + 1999 9 = 36000 2000*9+2+7+1999*9=\boxed{36000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...