2016 is coming!

What is the remainder when

1 2015 + 2 2015 + + 201 5 2015 1^{2015} + 2^{2015} + \cdots + 2015^{2015}

is divided by 2016?

2015 1008 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Dec 26, 2015

For 1 k 1007 1\leq k \leq 1007 we have k 2015 + ( 2016 k ) 2015 0 ( m o d 2016 ) k^{2015}+(2016-k)^{2015}\equiv 0 \pmod{2016} . Also 100 8 2015 0 ( m o d 2016 ) 1008^{2015}\equiv 0 \pmod{2016} since 2016 100 8 2 2016|1008^2 . Thus the remainder is 0 \boxed{0}

Yes Same Way.

Kushagra Sahni - 5 years, 5 months ago

Nicely Explained!

Dev Sharma - 5 years, 5 months ago

Log in to reply

Nice problem!

Otto Bretscher - 5 years, 5 months ago

I got the first part 1 k 1007 1 \le k \le 1007 . I don't get for 1008 k 2015 1008 \le k \le 2015 . Can you explain?

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

The second part is included in first part. See 2016 - k

Dev Sharma - 5 years, 5 months ago

Log in to reply

@Dev Sharma I see, I thought 2016 k 2016-k ranges from 1 to 1007 only. Stupid me.

Chew-Seong Cheong - 5 years, 5 months ago

Sir will you please elaborate ? How did you find k k , and k 2015 + ( 2016 k ) 2015 k^{2015} + (2016 - k)^{2015} = 0 0 (mod 2016 ) @Otto Bretscher

A Former Brilliant Member - 5 years, 5 months ago

Log in to reply

Just use modular arithmetic: k 2015 + ( 2016 k ) 2015 k 2015 + ( k ) 2015 = k 2015 k 2015 = 0 ( m o d 2016 ) k^{2015}+(2016-k)^{2015}\equiv k^{2015}+(-k)^{2015}=k^{2015}-k^{2015}=0 \pmod{2016}

Otto Bretscher - 5 years, 5 months ago

If you expand it, we get:

k 2015 + ( 2016 k ) 2015 = k 2015 + 201 6 2015 ( 2015 1 ) 201 6 2014 k + ( 2015 2 ) 201 6 2013 k 2 ( 2015 3 ) 201 6 2012 k 3 + . . . ( 2015 2013 ) 201 6 2 k 2013 + ( 2015 2014 ) 2016 k 2014 k 2015 = 201 6 2015 ( 2015 1 ) 201 6 2014 k + ( 2015 2 ) 201 6 2013 k 2 ( 2015 3 ) 201 6 2012 k 3 + . . . ( 2015 2013 ) 201 6 2 k 2013 + ( 2015 2014 ) 2016 k 2014 \begin{aligned} \small k^{2015} +(2016-k)^{2015} & \small = k^{2015} + 2016^{2015} - \begin{pmatrix} 2015 \\ 1 \end{pmatrix} 2016^{2014}k + \begin{pmatrix} 2015 \\ 2 \end{pmatrix} 2016^{2013}k^2 - \begin{pmatrix} 2015 \\ 3 \end{pmatrix} 2016^{2012}k^3 \\ & \small \quad + ... - \begin{pmatrix} 2015 \\ 2013 \end{pmatrix} 2016^2k^{2013} + \begin{pmatrix} 2015 \\ 2014 \end{pmatrix} 2016k^{2014} - k^{2015} \\ & \small = 2016^{2015} - \begin{pmatrix} 2015 \\ 1 \end{pmatrix} 2016^{2014}k + \begin{pmatrix} 2015 \\ 2 \end{pmatrix} 2016^{2013}k^2 - \begin{pmatrix} 2015 \\ 3 \end{pmatrix} 2016^{2012}k^3 \\ & \small \quad + ... - \begin{pmatrix} 2015 \\ 2013 \end{pmatrix} 2016^2k^{2013} + \begin{pmatrix} 2015 \\ 2014 \end{pmatrix} 2016k^{2014} \end{aligned}

We note that every term above has 2016 2016 as a factor.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

But is there any method to find k 2015 + ( 2016 k ) 2015 k^{2015}+(2016-k)^{2015}

A Former Brilliant Member - 5 years, 5 months ago

Log in to reply

@A Former Brilliant Member Aren't You aware of the rule that a^n+b^n is always divisible by a+b if n is an odd positive integer. It can be easily proven using factor theorem.

Kushagra Sahni - 5 years, 5 months ago

Log in to reply

@Kushagra Sahni Thank you very much,,, Try my latest problem...

A Former Brilliant Member - 5 years, 5 months ago

Maybe you can help me better understand. I was thinking the sum of 1 to an odd number is odd. Similarly this sum should be odd too, right? So how is it 0 mod 2016? Thanks in advance!

Drex Beckman - 5 years, 5 months ago

Log in to reply

The sum contains an even number of odd terms, ( 2 k 1 ) 2015 (2k-1)^{2015} for k = 1...1008 k=1...1008 , so that the sum will be even.

Otto Bretscher - 5 years, 5 months ago

Log in to reply

Okay. I see. Thanks for the help.

Drex Beckman - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...