240 Followers Problem - 3

Geometry Level 4

sin θ 1 + sin θ 2 + sin θ 3 \large \sin \theta_{1} + \sin \theta_{2} + \sin \theta_{3}

Given that cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \cos \left( \theta_{1} -\theta_{2} \right) + \cos \left( \theta_{2} -\theta_{3} \right) + \cos \left( \theta_{3} -\theta_{1} \right) = -\dfrac{3}{2} , find the value of the expression above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let a , b , c a,b,c be three complex numbers such that a = e θ 1 i a=e^{\theta_1 i} , b = e θ 2 i b=e^{\theta_2 i} and c = e θ 3 i c=e^{\theta_3 i} . Then let's find the magnitude of their sum, i.e., a + b + c |a+b+c| :

a + b + c = cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) a + b + c = ( cos θ 1 + cos θ 2 + cos θ 3 ) 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 a + b + c = 3 + 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 + cos θ 2 cos θ 3 + sin θ 2 sin θ 3 + cos θ 3 cos θ 1 + sin θ 3 sin θ 1 ) a + b + c = 3 + 2 ( cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) ) a + b + c = 3 + 2 ( 3 2 ) a + b + c = 0 a + b + c = 0 |a+b+c|=|\cos \theta_1+\cos \theta_2+\cos \theta_3+i(\sin \theta_1+\sin \theta_2+\sin \theta_3) \\ |a+b+c|=\sqrt{(\cos \theta_1+\cos \theta_2+\cos \theta_3)^2+(\sin \theta_1+\sin \theta_2+\sin \theta_3)^2} \\ |a+b+c|=\sqrt{3+2(\cos \theta_1 \cos \theta_2+\sin \theta_1 \sin \theta_2+\cos \theta_2 \cos \theta_3+\sin \theta_2 \sin \theta_3+\cos \theta_3 \cos \theta_1+\sin \theta_3 \sin \theta_1)} \\ |a+b+c|=\sqrt{3+2(\cos(\theta_1-\theta_2)+\cos(\theta_2-\theta_3)+\cos(\theta_3-\theta_1))} \\ |a+b+c|=\sqrt{3+2\left(-\dfrac{3}{2}\right)} \\ |a+b+c|=0 \implies a+b+c=0

Hence, cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) = 0 \cos \theta_1+\cos \theta_2+\cos \theta_3+i(\sin \theta_1+\sin \theta_2+\sin \theta_3)=0 . Comparing the imaginary part we get 0 \boxed{0} as our answer.

T h e s u m g i v e n = 1 1 2 , C o s θ i s n e v e r g r e a t e r t h a n 1 , t h e s u m i s n e g a t i v e , w e a l s o h a v e C o s ( 60 , 120 240 , O R 300 ) = 1 2 . 1 1 2 = 1 2 1 2 1 2 , O R 0 , 1 2 , 1 O R 1 2 , 1 , 1. As per Niven’s theorem, there is no other angle that would give rational number, and 1 1 2 , i s r a t i o n a l . L e t u s t r y t h e 1 s t . the differences must be -120 and -240. Let us take one angle as 60. The other two must be 60 ± 120 , o r 60 ± 240. θ 1 = 6 0 o , θ 2 = 18 0 o , θ 3 = 30 0 o , ! ! ! ! I t w o r k s ! S i n 60 + S i n 180 + S i n 300 = 0 The ~ sum ~ given~ = - 1\frac 1 2,~~ |Cos\theta|~is~never~greater~than~1,~~ the~ sum~~ is~~ negative,\\we~also~have~~ |Cos(60, ~120~240,OR~~300)|=\dfrac 1 2.\\ \therefore~ - 1\frac 1 2=- \frac 1 2 - \frac 1 2 - \frac 1 2, ~~~~OR~~~~ 0, - \frac 1 2, - 1~~OR~~\dfrac12,~- 1, - 1.\\ \text{As per Niven's theorem, there is no other angle that would give rational number, and }1\frac 1 2, is ~rational.\\ Let~us~try~the~1^{st}.~~\therefore \text{ the differences must be -120 and -240.}\\ \text{Let us take one angle as 60. The other two must be } 60\pm 120,~~~ or~~~60\pm 240. \\ \therefore~\theta_1=60^o, ~~\theta_2=180^o, ~~\theta_3=300^o,\\ !!!! ~It~works!\\ Sin60+Sin180+Sin300=\Large ~~~~\color{#D61F06}{0}

You haven't proven that the answer is same for every triplet of numbers that satisfy the equation.

Miloje Đukanović - 5 years, 7 months ago

Log in to reply

The other two triples do not satisfy the given equation.

Niranjan Khanderia - 5 years, 7 months ago

Log in to reply

There are infinitely many triplets that satisfy the given equation.

Miloje Đukanović - 5 years, 7 months ago

Log in to reply

@Miloje Đukanović With in 0 and 360 to give -1.5 as sum??

Niranjan Khanderia - 5 years, 7 months ago

Since edit is not working, an addition. Niven's theorem , the angles to give rational value of 0, 1/2, or 1 are 0, 60, 90, 120, 180, 240, 270, 300 for Sin function.

Niranjan Khanderia - 5 years, 7 months ago
Dhiraj Agarwalla
Dec 21, 2015

Given cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \cos \left( \theta_{1} -\theta_{2} \right) + \cos \left( \theta_{2} -\theta_{3} \right) + \cos \left( \theta_{3} -\theta_{1} \right) = -\dfrac{3}{2}

s i n ( θ 1 ) s i n ( θ 2 ) + c o s ( θ 1 ) c o s ( θ 2 ) + s i n ( θ 2 ) s i n ( θ 3 ) + c o s ( θ 2 ) c o s ( θ 3 ) + s i n ( θ 3 ) s i n ( θ 1 ) + c o s ( θ 3 ) c o s ( θ 1 ) = 3 2 sin(\theta_{1})sin(\theta_{2})+cos(\theta_{1})cos(\theta_{2})+sin(\theta_{2})sin(\theta_{3})+cos(\theta_{2})cos(\theta_{3})+sin(\theta_{3})sin(\theta_{1})+cos(\theta_{3})cos(\theta_{1})=-\frac{3}{2}

s i n ( θ 1 ) + s i n ( θ 2 ) + s i n ( θ 3 ) = 3 + 2 ( s i n ( θ 1 ) s i n ( θ 2 ) + c o s ( θ 1 ) c o s ( θ 2 ) + s i n ( θ 2 ) s i n ( θ 3 ) + c o s ( θ 2 ) c o s ( θ 3 ) + s i n ( θ 3 ) s i n ( θ 1 ) + c o s ( θ 3 ) c o s ( θ 1 ) ) ( c o s ( θ 1 ) + c o s ( θ 2 ) + c o s ( θ 2 ) ) 2 ) sin(\theta_{1})+sin(\theta_{2})+sin(\theta_{3})=\sqrt{3+2(sin(\theta_{1})sin(\theta_{2})+cos(\theta_{1})cos(\theta_{2})+sin(\theta_{2})sin(\theta_{3})+cos(\theta_{2})cos(\theta_{3})+sin(\theta_{3})sin(\theta_{1})+cos(\theta_{3})cos(\theta_{1}))-(cos(\theta_{1})+cos(\theta_{2})+cos(\theta_{2}))^{2})}

( c o s ( θ 1 ) + c o s ( θ 2 ) + c o s ( θ 3 ) ) 2 \sqrt{-(cos(\theta_{1})+cos(\theta_{2})+cos(\theta_{3}))^{2}}

Therefore only possible answer is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...