sin θ 1 + sin θ 2 + sin θ 3
Given that cos ( θ 1 − θ 2 ) + cos ( θ 2 − θ 3 ) + cos ( θ 3 − θ 1 ) = − 2 3 , find the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
T h e s u m g i v e n = − 1 2 1 , ∣ C o s θ ∣ i s n e v e r g r e a t e r t h a n 1 , t h e s u m i s n e g a t i v e , w e a l s o h a v e ∣ C o s ( 6 0 , 1 2 0 2 4 0 , O R 3 0 0 ) ∣ = 2 1 . ∴ − 1 2 1 = − 2 1 − 2 1 − 2 1 , O R 0 , − 2 1 , − 1 O R 2 1 , − 1 , − 1 . As per Niven’s theorem, there is no other angle that would give rational number, and 1 2 1 , i s r a t i o n a l . L e t u s t r y t h e 1 s t . ∴ the differences must be -120 and -240. Let us take one angle as 60. The other two must be 6 0 ± 1 2 0 , o r 6 0 ± 2 4 0 . ∴ θ 1 = 6 0 o , θ 2 = 1 8 0 o , θ 3 = 3 0 0 o , ! ! ! ! I t w o r k s ! S i n 6 0 + S i n 1 8 0 + S i n 3 0 0 = 0
You haven't proven that the answer is same for every triplet of numbers that satisfy the equation.
Log in to reply
The other two triples do not satisfy the given equation.
Log in to reply
There are infinitely many triplets that satisfy the given equation.
Log in to reply
@Miloje Đukanović – With in 0 and 360 to give -1.5 as sum??
Since edit is not working, an addition. Niven's theorem , the angles to give rational value of 0, 1/2, or 1 are 0, 60, 90, 120, 180, 240, 270, 300 for Sin function.
Given cos ( θ 1 − θ 2 ) + cos ( θ 2 − θ 3 ) + cos ( θ 3 − θ 1 ) = − 2 3
s i n ( θ 1 ) s i n ( θ 2 ) + c o s ( θ 1 ) c o s ( θ 2 ) + s i n ( θ 2 ) s i n ( θ 3 ) + c o s ( θ 2 ) c o s ( θ 3 ) + s i n ( θ 3 ) s i n ( θ 1 ) + c o s ( θ 3 ) c o s ( θ 1 ) = − 2 3
s i n ( θ 1 ) + s i n ( θ 2 ) + s i n ( θ 3 ) = 3 + 2 ( s i n ( θ 1 ) s i n ( θ 2 ) + c o s ( θ 1 ) c o s ( θ 2 ) + s i n ( θ 2 ) s i n ( θ 3 ) + c o s ( θ 2 ) c o s ( θ 3 ) + s i n ( θ 3 ) s i n ( θ 1 ) + c o s ( θ 3 ) c o s ( θ 1 ) ) − ( c o s ( θ 1 ) + c o s ( θ 2 ) + c o s ( θ 2 ) ) 2 )
− ( c o s ( θ 1 ) + c o s ( θ 2 ) + c o s ( θ 3 ) ) 2
Therefore only possible answer is 0.
Problem Loading...
Note Loading...
Set Loading...
Let a , b , c be three complex numbers such that a = e θ 1 i , b = e θ 2 i and c = e θ 3 i . Then let's find the magnitude of their sum, i.e., ∣ a + b + c ∣ :
∣ a + b + c ∣ = ∣ cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) ∣ a + b + c ∣ = ( cos θ 1 + cos θ 2 + cos θ 3 ) 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 ∣ a + b + c ∣ = 3 + 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 + cos θ 2 cos θ 3 + sin θ 2 sin θ 3 + cos θ 3 cos θ 1 + sin θ 3 sin θ 1 ) ∣ a + b + c ∣ = 3 + 2 ( cos ( θ 1 − θ 2 ) + cos ( θ 2 − θ 3 ) + cos ( θ 3 − θ 1 ) ) ∣ a + b + c ∣ = 3 + 2 ( − 2 3 ) ∣ a + b + c ∣ = 0 ⟹ a + b + c = 0
Hence, cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) = 0 . Comparing the imaginary part we get 0 as our answer.