24, 18, 24, 18, will this continue?

Algebra Level 3

Let f ( x ) f(x) be a cubic polynomial such that

{ f ( 1 ) = 24 f ( 2 ) = 18 f ( 3 ) = 24 f ( 4 ) = 18 \large \begin{cases} f(1)=24 \\ f(2)=18 \\ f(3)=24 \\ f(4)=18 \end{cases}

Determine f ( 5 ) f(5) .


Try this


The answer is -24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let f ( x ) = a x 3 + b x 2 + c x + d f(x)=ax^3+bx^2+cx+d

So f ( 1 ) = a + b + c + d = 24 f(1)=a+b+c+d=24

f ( 2 ) = 8 a + 4 b + 2 c + d = 18 f(2)=8a+4b+2c+d=18

f ( 3 ) = 27 a + 9 b + 3 c + d = 24 f(3)=27a+9b+3c+d=24

f ( 4 ) = 64 a + 16 b + 4 c + d = 18 f(4)=64a+16b+4c+d=18

If you solve this system of equations above, you will get that the only possible values for a , b , c , d a,b,c,d are

a = 4 , b = 30 , c = 68 , d = 66 a=-4,b=30,c=-68,d=66

So the only possible cubic polynomial is f ( x ) = 4 x 3 + 30 x 2 68 x + 66 f(x)=-4x^3+30x^2-68x+66

So f ( 5 ) = 500 + 750 340 + 66 = 24. f(5)=-500+750-340+66=-24.

How do you know that there is only one such cubic polynomial? How did you construct this polynomial?

Pi Han Goh - 2 years, 5 months ago

Log in to reply

I just edited my comment

ابراهيم فقرا - 2 years, 5 months ago

Log in to reply

Ah, I find solving this via method of differences to be much easier.

Pi Han Goh - 2 years, 5 months ago

Log in to reply

@Pi Han Goh Oh , I don't know about it , I will see it today , thanks

ابراهيم فقرا - 2 years, 5 months ago

Solving the system is not that simple To be honest.

Deva Craig - 2 years, 3 months ago
Otto Bretscher
Dec 20, 2018

For a cubic, f ( x ) f(x) , the second differences, g ( x ) = 2 f ( x ) f ( x + 1 ) f ( x 1 ) g(x)=2f(x)-f(x+1)-f(x-1) , form a linear function. Now g ( 2 ) = 2 × 18 24 24 = 12 g(2)=2 \times 18-24-24=-12 and g ( 3 ) = 12 g(3)=12 so g ( 4 ) = 36 24 f ( 5 ) = 36 g(4)=36-24-f(5)=36 and f ( 5 ) = 24 f(5)=\boxed{-24}

Chew-Seong Cheong
Dec 20, 2018

We note that the following cubic polynomial satisfies the system of equations.

f ( x ) = 4 ( x 2 ) ( x 3 ) ( x 4 ) + 9 ( x 1 ) ( x 3 ) ( x 4 ) 12 ( x 1 ) ( x 2 ) ( x 4 ) + 3 ( x 1 ) ( x 2 ) ( x 3 ) \begin{aligned} f(x) & = {\color{#3D99F6}-4(x-2)(x-3)(x-4)} + 9(x-1)(x-3)(x-4) - 12(x-1)(x-2)(x-4) + 3(x-1)(x-2)(x-3) \end{aligned}

Note that the cubic sub-polynomial 4 ( x 2 ) ( x 3 ) ( x 4 ) = { 24 when x = 1 0 when x = 2 , 3 , 4 \color{#3D99F6} -4(x-2)(x-3)(x-4) = \begin{cases} 24 & \text{when }x = 1 \\ 0 & \text{when }x=2,3,4 \end{cases} . Similarly for the other three cubic sub-polynomials, so that f ( x ) = { 24 when x = 1 , 3 18 when x = 2 , 4 f(x) = \begin{cases} 24 & \text{when }x = 1, 3 \\ 18 & \text{when }x = 2, 4 \end{cases}

Therefore,

f ( 5 ) = 4 ( 3 ) ( 2 ) ( 1 ) + 9 ( 4 ) ( 2 ) ( 1 ) 12 ( 4 ) ( 3 ) ( 1 ) + 3 ( 4 ) ( 3 ) ( 2 ) = 24 + 72 144 + 72 = 24 \begin{aligned} f(5) & = -4(3)(2)(1) + 9(4)(2)(1) - 12(4)(3)(1) + 3(4)(3)(2) \\ & = -24 + 72 - 144 + 72 \\ & = \boxed{-24} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...