27th April

Calculus Level 4

1 + π 6 27 6 ! + π 12 2 7 2 12 ! + π 18 2 7 3 18 ! + = e π a + e π a 2 a 1+\dfrac{\pi^6}{27 \cdot 6!} +\dfrac{\pi^{12}}{27^2\cdot 12!} +\dfrac{\pi^{18}}{27^3\cdot 18!}+\cdots = \dfrac{e^{\frac{\pi}{\sqrt{a}}} +e^{-\frac{\pi}{\sqrt{a}}}}{2a}

The equation above holds true for positive square-free integer a a . Find a a

The Problem is original . 27 in the denominator is a Coincidence .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dwaipayan Shikari
Apr 27, 2021

This result is based on observations

n = 0 x n n ! = e 1 x \displaystyle \sum_{n=0}^∞ \dfrac{x^n}{n!} = e^{1\cdot x} where 1 1 is the root of x 1 = 0 x-1=0

n = 0 x 2 n ( 2 n ) ! = e x + e x 2 \displaystyle \sum_{n=0}^∞ \dfrac{x^{2n}}{(2n)!} = \dfrac{e^x+e^{-x}}{2} where 1 , 1 1 ,-1 are the roots of x 2 1 = 0 x^2-1=0

n = 0 x 3 n ( 3 n ) ! = e x + e ω x + e ω 2 x 3 \displaystyle\sum_{n=0}^∞ \dfrac{x^{3n}}{(3n)!} = \dfrac{e^x+e^{\omega x}+e^{\omega^2 x}}{3} where 1 , ω , ω 2 1,\omega,\omega^2 are the roots of x 3 1 = 0 x^3-1=0 (Proved by sir @Chris Lewis and sir@Chew-Seong Cheong in this problem )

We can also express n = 0 x 4 n ( 4 n ) ! = e i x + e i x + e 1 x + e 1 x 4 = cos ( x ) + cosh ( x ) 2 \displaystyle\sum_{n=0}^∞ \dfrac{x^{4n}}{(4n)!} = \dfrac{e^{ix}+e^{-ix} +e^{1\cdot x} +e^{-1\cdot x} }{4} = \dfrac{\cos(x)+\cosh(x)}{2} where i , i , 1 , 1 i,-i,1,-1 are the roots of x 4 1 = 0 x^4-1=0

So for general n = 0 x a n ( a n ) ! = r = 1 a e a r x a \displaystyle\sum_{n=0}^∞ \dfrac{x^{an}}{(an)!} = \dfrac{\sum_{r=1}^a e^{a_r x} }{a} where a 1 , a 2 , . . a a a_1, a_2 ,..a_a are the roots of x a 1 = 0 x^a -1=0

So n = 0 x 6 n ( 6 n ) ! = e x + e x + e x / 2 ( e 3 x i 2 + e 3 x i 2 ) + e x / 2 ( e 3 x i 2 + e 3 x i 2 ) 6 \sum_{n=0}^∞ \dfrac{x^{6n}}{(6n)!} = \dfrac{e^x +e^{-x} + e^{x/2} (e^{\frac{\sqrt{3}xi}{2}} +e^{-\frac{\sqrt{3}xi}{2}} )+e^{-x/2} (e^{\frac{\sqrt{3}xi}{2}} +e^{-\frac{\sqrt{3}xi}{2}}) }{6} = e x + e x + 2 cos ( 3 x 2 ) ( e x / 2 + e x / 2 ) 6 = cosh ( x ) + 2 cosh ( x / 2 ) cos ( 3 x 2 ) 3 = \dfrac{e^x +e^{-x} +2\cos(\frac{\sqrt{3}x}{2} ) (e^{x/2} +e^{-x/2} )} {6} = \dfrac{\cosh(x)+ 2\cosh(x/2)\cos(\frac{\sqrt{3} x}{2}) }{3} Put x = π 3 x= \dfrac{π}{\sqrt{3}} one will get n = 0 π 6 n 2 7 n ( 6 n ) ! = 1 3 cosh ( π 3 ) = e π / 3 + e π / 3 2 3 \sum_{n=0}^∞ \dfrac{π^{6n}}{27^n (6n)!} =\dfrac{1}{3} \cosh(\frac{π}{\sqrt{3}})= \dfrac{e^{π/\sqrt{3}} +e^{-π/\sqrt{3}}}{2\cdot 3}

Use \cdot (center dot) instead of decimal point for multiplication sign.

Chew-Seong Cheong - 1 month, 2 weeks ago

Log in to reply

Thanks sir!

Dwaipayan Shikari - 1 month, 1 week ago
Chew-Seong Cheong
Apr 28, 2021

Consider the following Macluarin series of cosh ( ω n x ) \cosh (\omega^n x) , where n = 0 , 1 , 2 n=0,1,2 and ω \omega is the cubic root of unit. Note that ω = e 2 π 3 i \omega = e^{\frac {2\pi}3i} , ω 3 = 1 \omega^3 = 1 and ω 2 + ω + 1 = 0 \omega^2+\omega+1 = 0 .

cosh x = 1 0 ! + x 2 2 ! + x 4 4 ! + x 6 6 ! + x 8 8 ! + x 10 10 ! + x 12 12 ! + cosh ( ω x ) = 1 0 ! + ω 2 x 2 2 ! + ω x 4 4 ! + x 6 6 ! + ω 2 x 8 8 ! + ω x 10 10 ! + x 12 12 ! + cosh ( ω 2 x ) = 1 0 ! + ω x 2 2 ! + ω 2 x 4 4 ! + x 6 6 ! + ω x 8 8 ! + ω 2 x 10 10 ! + x 12 12 ! + cosh x + cosh ( ω x ) + cosh ( ω 2 x ) = 3 ( 1 0 ! + x 6 6 ! + x 12 12 ! + x 18 18 ! + ) 1 3 ( cosh π 3 + cosh ω π 3 + cosh ω 2 π 3 ) = 1 + π 6 27 6 ! + π 12 2 7 2 12 ! + π 18 2 7 3 18 ! + \begin{aligned} \cosh x & = \frac 1{0!} + \frac {x^2}{2!} + \frac {x^4}{4!} + \frac {x^6}{6!} + \frac {x^8}{8!} + \frac {x^{10}}{10!} + \frac {x^{12}}{12!} + \cdots \\ \cosh (\omega x) & = \frac 1{0!} + \frac {\omega^2 x^2}{2!} + \frac {\omega x^4}{4!} + \frac {x^6}{6!} + \frac {\omega^2 x^8}{8!} + \frac {\omega x^{10}}{10!} + \frac {x^{12}}{12!} + \cdots \\ \cosh (\omega^2 x) & = \frac 1{0!} + \frac {\omega x^2}{2!} + \frac {\omega^2 x^4}{4!} + \frac {x^6}{6!} + \frac {\omega x^8}{8!} + \frac {\omega^2 x^{10}}{10!} + \frac {x^{12}}{12!} + \cdots \\ \implies \cosh x + \cosh (\omega x) + \cosh (\omega^2 x) & = 3 \left(\frac 1{0!} + \frac {x^6}{6!} + \frac {x^{12}}{12!} + \frac {x^{18}}{18!} + \cdots \right) \\ \implies \frac 13 \left(\cosh \frac \pi{\sqrt 3} + \cosh \frac {\omega \pi}{\sqrt 3} + \cosh \frac {\omega^2 \pi}{\sqrt 3} \right) & = 1 + \frac {\pi^6}{27\cdot 6!} + \frac {\pi^{12}}{27^2 \cdot 12!} + \frac {\pi^{18}}{27^3\cdot 18!} + \cdots \end{aligned}

Therefore,

k = 0 π 6 k 2 7 k ( 6 k ) ! = 1 3 ( cosh π 3 + cosh ω π 3 + cosh ω 2 π 3 ) = 1 3 ( cosh π 3 + cosh ( π 3 e 2 π 3 i ) + cosh ( π 3 e 2 π 3 i ) ) = 1 3 ( cosh π 3 + cosh ( π 2 3 + π 2 i ) + cosh ( π 2 3 π 2 i ) ) = 1 6 ( e π 3 + e π 3 + e π 3 + π 2 i + e π 3 π 2 i + e π 3 π 2 i + e π 3 + π 2 i ) = 1 6 ( e π 3 + e π 3 + i e π 3 i e π 3 i e π 3 + i e π 3 ) = e π 3 + e π 3 6 \begin{aligned} \sum_{k=0}^\infty \frac {\pi^{6k}}{27^k (6k)!} & = \frac 13 \left(\cosh \frac \pi{\sqrt 3} + \cosh \frac {\omega \pi}{\sqrt 3} + \cosh \frac {\omega^2 \pi}{\sqrt 3} \right) \\ & = \frac 13 \left(\cosh \frac \pi{\sqrt 3} + \cosh \left(\frac \pi{\sqrt 3}e^{\frac {2\pi}3i}\right) + \cosh \left(- \frac \pi{\sqrt 3}e^{\frac {2\pi}3i}\right) \right) \\ & = \frac 13 \left(\cosh \frac \pi{\sqrt 3} + \cosh \left(-\frac \pi{2\sqrt 3} + \frac \pi 2 i\right) + \cosh \left(-\frac \pi{2\sqrt 3} - \frac \pi 2 i\right) \right) \\ & = \frac 16 \left(e^{\frac \pi{\sqrt 3}} + e^{-\frac \pi{\sqrt 3}} + e^{-\frac \pi{\sqrt 3}+\frac \pi 2 i} + e^{\frac \pi{\sqrt 3}-\frac \pi 2 i} + e^{-\frac \pi{\sqrt 3}-\frac \pi 2 i} + e^{\frac \pi{\sqrt 3}+\frac \pi 2 i} \right) \\ & = \frac 16 \left(e^{\frac \pi{\sqrt 3}} + e^{-\frac \pi{\sqrt 3}} + ie^{-\frac \pi{\sqrt 3}} - ie^{\frac \pi{\sqrt 3}} - ie^{-\frac \pi{\sqrt 3}} + ie^{\frac \pi{\sqrt 3}} \right) \\ & = \frac {e^{\frac \pi{\sqrt 3}} + e^{-\frac \pi{\sqrt 3}}}6 \end{aligned}

Therefore a = 3 a = \boxed 3 .

Sir can you please tell how to align sentences in the middle ?

Omek K - 1 month, 2 weeks ago

Log in to reply

Just use \ [ \ ] \backslash [ \quad \backslash ] instead of \ ( \ ) \backslash ( \quad \backslash ) .

Chew-Seong Cheong - 1 month, 2 weeks ago

Log in to reply

Thank you sir

Omek K - 1 month, 2 weeks ago

Log in to reply

@Omek K How I did the above, If you are interested.

Chew-Seong Cheong - 1 month, 2 weeks ago

Log in to reply

@Chew-Seong Cheong Thank you for sharing sir, and how do you space words if it is a part align latex ?

Omek K - 1 month, 2 weeks ago

Log in to reply

@Omek K Use & within the align function to align. Note that & is in front of every =. The first & is center align. The second & is right align. I regular use it to place my comments in blue and smaller font after the second &. You will find them in my other solutions. I am unsure about the 3rd & which I never use.

Chew-Seong Cheong - 1 month, 1 week ago

Log in to reply

@Chew-Seong Cheong Thank you sir

Omek K - 1 month, 1 week ago
Shinnosuke Ikuta
Apr 29, 2021

Σk=1→n π^6(k-1)/27^k=√3^6 I don't know anything about it, but I made it.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...