3 studs

Calculus Level 4

0 π / 2 e x sin x cos x d x \large \int_{0}^{\pi /2} e^x\sin x\cos x \, dx

If the above integral can be expressed as a + e b π / c d , \large \dfrac{a+{e^{{b\pi} / {c}}}}{d} , where a , b , c a,b,c and d d are positive integers with b b and c c coprime, find the value of a + b + c + d a+b+c+d .


This problem is original.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 12, 2016

0 π 2 e x sin x cos x d x = 1 2 0 π 2 e x sin ( 2 x ) d x = i 4 0 π 2 e x ( e 2 x i e 2 x i ) d x = i 4 ( 0 π 2 e ( 1 2 i ) x d x 0 π 2 e ( 1 + 2 i ) x d x ) = i 4 0 π 2 ( e ( 1 2 i ) x e ( 1 + 2 i ) x ) d x = i 4 [ e ( 1 2 i ) x 1 2 i e ( 1 + 2 i ) x 1 + 2 i ] 0 π 2 = i 4 [ e x ( e 2 x i e 2 x i + 2 i e 2 x i + 2 i e 2 x i ) 1 + 4 ] 0 π 2 = i 2 × 5 [ e x ( sin ( 2 x ) + 2 i cos ( 2 x ) ) ] 0 π 2 = i 10 [ e π 2 ( sin π + 2 i cos π ) e 0 ( sin 0 + 2 i cos 0 ) ] = i 10 [ 2 i e π 2 2 i ] = 1 + e π 2 5 \begin{aligned} \int_0^\frac{\pi}{2} e^x \sin x \cos x \space dx & = \frac{1}{2} \int_0^\frac{\pi}{2} e^x \sin (2x) \space dx \\ & = \frac{i}{4} \int_0^\frac{\pi}{2} e^x \left(e^{-2xi} - e^{2xi} \right) \space dx \\ & = \frac{i}{4} \left(\int_0^\frac{\pi}{2} e^{(1-2i)x} \space dx - \int_0^\frac{\pi}{2} e^{(1+2i)x} \space dx \right) \\ & = \frac{i}{4} \int_0^\frac{\pi}{2} \left( e^{(1-2i)x} - e^{(1+2i)x} \right) dx \\ & = \frac{i}{4} \left[ \frac{e^{(1-2i)x}}{1-2i} - \frac{e^{(1+2i)x}}{1+2i} \right]_0 ^\frac{\pi}{2} \\ & = \frac{i}{4} \left[ \frac{e^x \left(e^{-2xi} - e^{2xi} + 2ie^{-2xi} + 2ie^{2xi} \right)}{1+4} \right]_0 ^\frac{\pi}{2} \\ & = \frac{i}{2 \times 5} \left[ e^x \left(\sin (2x) + 2i \cos(2x) \right) \right]_0 ^\frac{\pi}{2} \\ & = \frac{i}{10} \left[ e^{\frac{\pi}{2}} \left(\sin \pi + 2i \cos \pi \right) - e^{0} \left(\sin 0 + 2i \cos 0 \right)\right] \\ & = \frac{i}{10} \left[ -2ie^{\frac{\pi}{2}} - 2i \right] \\ & = \frac{1+e^\frac{\pi}{2}}{5} \end{aligned}

a + b + c + d = 1 + 1 + 2 + 5 = 9 \Rightarrow a+b+c+d = 1+1+2+5 = \boxed{9}

Nice solution... (+1)..

Rishabh Jain - 5 years, 4 months ago

I like your approach.. (+1)

Akhil Bansal - 5 years, 4 months ago

Log in to reply

Thanks to Euler, greatest mathematician of all times.

Chew-Seong Cheong - 5 years, 4 months ago

I didn't thought of de moivre's formula for sin2x, so I just proceed it with IBP. Hats off to you sir for The beautiful solution of yours.

Syed Shahabudeen - 5 years, 3 months ago
Nihar Mahajan
Feb 12, 2016

Note that we have 3 distinct terms in the integrand. But it would be convenient to use IBP if we have two terms instead of 3. Hence , we rewrite the given integral as 1 2 0 π 2 e x sin 2 x d x \displaystyle \dfrac{1}{2} \int_{0}^{\frac{\pi}{2}} e^x\sin 2x \ dx using the identity sin 2 x = 2 sin x cos x \sin 2x=2\sin x \cos x . Now we conveniently evaluate this integral using Integration by parts:

u = sin ( 2 x ) d u = 2 cos 2 x d x u=\sin(2x)\Rightarrow du=2\cos 2x \ dx , d v = e x d x v = e x dv=e^x \ dx \Rightarrow v=e^x , hence we have:

1 2 0 π 2 e x sin 2 x d x = 1 2 ( e x sin ( 2 x ) 0 π 2 2 0 π 2 e x cos 2 x d x ) = 1 2 ( 0 2 ( e x cos ( 2 x ) 0 π 2 + 2 0 π 2 e x sin 2 x d x ) ) The above step is by IBP ( u = cos 2 x , d v = e x d x ) I 2 = 2 e π / 2 + 2 4 I 2 w h e r e I = 0 π 2 e x sin 2 x d x 5 I = 2 ( e π / 2 + 1 ) I = 2 ( e π / 2 + 1 ) 5 I 2 = ( e π / 2 + 1 ) 5 0 π 2 e x sin x cos x d x = ( e π / 2 + 1 ) 5 \begin{aligned} \dfrac{1}{2} \int_{0}^{\frac{\pi}{2}} e^x\sin 2x \ dx &= \dfrac{1}{2}\left( e^x \sin(2x) \bigg |_{0}^{\frac{\pi}{2}} - 2\int_{0}^{\frac{\pi}{2}} e^x\cos 2x \ dx \right) \\ &=\dfrac{1}{2}\left(0 - 2\left( e^x\cos(2x) \bigg |^{\frac{\pi}{2}}_{0} + 2\int_{0}^{\frac{\pi}{2}} e^x\sin 2x \ dx\right)\right) \\ &\text{The above step is by IBP} \ (u=\cos 2x \ , \ dv=e^x \ dx ) \\ &\Rightarrow \dfrac{I}{2}= \dfrac{2e^{\pi/2} + 2 - 4I}{2} \ where \ I=\int_{0}^{\frac{\pi}{2}} e^x\sin 2x \ dx \\ &\Rightarrow 5I=2(e^{\pi/2} + 1) \\ &\Rightarrow I=\dfrac{2(e^{\pi/2} + 1)}{5} \\ &\Rightarrow \dfrac{I}{2} = \dfrac{(e^{\pi/2} + 1)}{5} \\ & \Rightarrow \int_{0}^{\frac{\pi}{2}} e^x\sin x\cos x \ dx = \dfrac{(e^{\pi/2} + 1)}{5} \end{aligned}

Hence , a = 1 , b = 1 , c = 2 , d = 5 a + b + c + d = 9 a=1 \ , \ b=1 \ , \ c=2 \ , \ d=5 \Rightarrow a+b+c+d=\boxed{9} /

Moderator note:

Good approach.

what is ibp?

Mardokay Mosazghi - 5 years, 4 months ago

Log in to reply

Integration by parts

Pulkit Gupta - 5 years, 4 months ago

Log in to reply

lol i know what it is srry i just didnot know it was abbreviated ibp -_-

Mardokay Mosazghi - 5 years, 4 months ago

Log in to reply

@Mardokay Mosazghi Yeah,I figured that out :-)

Pulkit Gupta - 5 years, 4 months ago

Same way..

Akhil Bansal - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...