37,53 and trapezoid

Geometry Level 4

A B C D ABCD is a trapezoid with A B C D AB||CD , A B = 1000 AB=1000 , C D = 2008 CD=2008 , D = 37 ° D=37° and C = 53 ° C=53° . If M M and N N are the midpoints of A B AB and C D CD respectively; then find M N MN .


The answer is 504.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mietantei Conan
Jun 27, 2014

Extend A D AD and B C BC and suppose they meet at E E . E = 90 ° E=90° as D = 37 ° D=37° and C = 53 ° C=53° . E N = 1004 EN=1004 as it is the median of triangle D E C DEC . E M = 500 EM = 500 (same reason). Hence, M N = 504 MN=504 .

Can you please explain how EN=1004 and EM=500 ? Thanks.

Niranjan Khanderia - 5 years, 4 months ago

Log in to reply

since DEC is a right angled triangle, The mid point of the hypotenuse is the circumcentre. Thus, ND = NC = NE because they're the radii

Mehul Arora - 4 years, 9 months ago

Log in to reply

Thanks. Got it. I should have understood before!

Niranjan Khanderia - 4 years, 9 months ago

Log in to reply

@Niranjan Khanderia My pleasure :)

Mehul Arora - 4 years, 9 months ago

tan 37 = h x \tan 37=\dfrac{h}{x} \implies h = x tan 37 h=x\tan 37 ( 1 ) \color{#D61F06}(1)

tan 53 = h 1008 x \tan53=\dfrac{h}{1008-x} \implies h = ( 1008 x ) ( tan 53 ) h=(1008-x)(\tan 53) ( 2 ) \color{#D61F06}(2)

h = h h=h Equate ( 1 ) \color{#D61F06}(1) and ( 2 ) \color{#D61F06}(2) .

x tan 37 = tan 53 ( 1008 x ) x\tan 37= \tan 53 (1008-x)

x ( tan 37 tan 53 ) = 1008 x x\left(\dfrac{\tan 37}{\tan 53}\right)=1008-x

0.5678 x = 1008 x 0.5678x=1008-x

1.5678 x = 1008 1.5678x=1008

x 642.94 x\approx 642.94

It follows that h = ( 642.94 ) ( tan 37 ) 484.49 h=(642.94)(\tan 37) \approx 484.49

y = 1004 ( 1008 x ) 500 = 1004 ( 1008 484.49 ) 500 = 138.94 y=1004-(1008-x)-500=1004-(1008-484.49)-500=138.94

By pythagorean theorem, we have

M N = ( 484.49 ) 2 + ( 138.94 ) 2 = MN=\sqrt{(484.49)^2+(138.94)^2}= 504 \boxed{504}

Draw perpendiculars from A, M, B, on DC with feet at P, Q, R . T h e h e i g h t h = 2008 1000 C o t 37 + C o t 53 = 484.47. C P = h C o t 53 = 365.07. P N = C D 2 C P , a n d A M = A B 2 . Q N = P N A M = 138.93. M N = h 2 + Q N 2 = 503.9967518. SINCE answer box need answer in integer, M N = 504 \text{Draw perpendiculars from A, M, B, on DC with feet at P, Q, R .}\\ The ~ height ~ h =\dfrac{2008-1000}{Cot37+Cot53}=484.47.\\ CP=h*Cot53=365.07. \\ \therefore ~ PN=\dfrac {CD} 2-CP, ~~ and ~~AM=\dfrac{AB} 2.\\ \therefore ~QN=PN - AM=138.93. ~~~\implies ~ MN=\sqrt{h^2+QN^2}=503.9967518.\\ \text{SINCE answer box need answer in integer, } MN=\Large ~~~\color{#D61F06}{504}

O R ~~~~~~OR ~~~~~~

Let BEC=53 degrees. So ABEC is an isosceles trapezoid. M, L are midpoints of AB and CE. F r o m A B D C , t h e h e i g h t h = 2008 1000 C o t 53 + C o t 37 = 484.47. E D = h ( C o t 37 C o t 53 ) Line CE, E is pulled through ED, its midpoint is pulled by E D 2 . E D 2 = L N = 138.9195. S o M N = h 2 + L N 2 = 503.9967518. \text{ Let BEC=53 degrees. So ABEC is an isosceles trapezoid. M, L are midpoints of AB and CE.}\\ From ~ ABDC, ~~ the ~ height ~ h =\dfrac{2008-1000}{Cot53+Cot37}=484.47.\\ ED=h*(Cot37 - Cot53)\\ \text{Line CE, E is pulled through ED, its midpoint is pulled by } \dfrac {ED} 2.\\ \dfrac {ED} 2=LN=138.9195 . ~~~So ~ MN=\sqrt {h^2+LN^2}=503.9967518.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...