400 Followers Problem - Reciprocal Summations 3

Calculus Level 5

S = 1 + 1 5 1 7 1 11 + 1 13 + 1 17 1 19 1 23 + \large{S = 1 + \dfrac{1}{5}- \dfrac{1}{7} - \dfrac{1}{11} + \dfrac{1}{13} + \dfrac{1}{17} - \dfrac{1}{19} - \dfrac{1}{23} + \ldots }

If S S can be expressed as π A B \dfrac{\pi^A}{B} for positive integers A , B A,B , submit the value of A + B A+B as your answer.


Also try these:
400 Followers Problem - Reciprocal Summations #1
400 Followers Problem - Reciprocal Summations #2


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 23, 2015

S = 1 1 + 1 5 1 7 1 11 + 1 13 + 1 17 1 19 1 23 + . . . = ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) + ( 1 3 1 9 + 1 15 1 21 + 1 27 1 33 + . . . ) = ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) + 1 3 ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) = 4 3 ( 1 1 3 + 1 5 1 7 + 1 9 1 11 + . . . ) Maclaurin series tan 1 x = x x 3 3 + x 5 5 = 4 3 tan 1 1 = 4 3 × π 4 = π 3 \begin{aligned} S & = \frac{1}{1} + \frac{1}{5} - \frac{1}{7} - \frac{1}{11} + \frac{1}{13} + \frac{1}{17}-\frac{1}{19} - \frac{1}{23} + ... \\ & = \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + ... \right) + \left( \frac{1}{3} - \frac{1}{9} + \frac{1}{15} - \frac{1}{21} + \frac{1}{27} - \frac{1}{33} + ... \right) \\ & = \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + ... \right) + \frac{1}{3} \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + ... \right) \\ & = \frac{4}{3} \left(\color{#3D99F6}1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + ... \right) \quad \quad \small \color{#3D99F6} \text{Maclaurin series } \tan^{-1} x = x - \frac {x^3}3 + \frac {x^5}5 - \cdots \\ & = \frac 43 \tan^{-1} 1 = \frac 43 \times \frac \pi 4 = \frac \pi 3 \end{aligned}

Therefore, A + B = 1 + 3 = 4 A+B = 1 + 3 = \boxed 4 .

Reference: Maclaurin series

You could have used the Taylor expansion of tan (inverse) x

Jitender Sharma - 2 years, 5 months ago

Log in to reply

Yes, I didn't know that. I really like to use i i . I will change the solution.

Chew-Seong Cheong - 2 years, 5 months ago
Gian Sanjaya
Sep 23, 2015

Let N = i = 0 ( 1 ) i 2 i + 1 N = \displaystyle \sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1} . We can see that:

S = i = 0 ( 1 ) i 2 i + 1 + i = 0 ( 1 ) i 6 i + 3 = N + N 3 = 4 3 N S = \displaystyle \sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1} + \displaystyle \sum_{i=0}^{\infty} \frac{(-1)^i}{6i+3} = N + \frac{N}{3} = \frac{4}{3} N

Using the formula to calculate the sum of all terms of a geometric progression, we have:

1 x 2 + x 4 x 6 + . . . = i = 0 ( 1 ) i x 2 i = 1 1 + x 2 1-x^2+x^4-x^6+... =\displaystyle \sum_{i=0}^{\infty} (-1)^i x^{2i} = \frac{1}{1+x^2}

Multipying each sides with dx and then integrating it gives:

i = 0 ( 1 ) i x 2 i + 1 2 i + 1 = 1 1 + x 2 d x = arctan x + C \displaystyle \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{2i+1} = \int \frac{1}{1+x^2} dx = \arctan x + C

Since arctan 0 = 0, and the LHS is 0 for x=0, then C=0. Also, notice that the LHS equals N at x=1, while the RHS equals arctan 1, thus equals π 4 \frac{\pi}{4} . Thus:

S = 4 3 π 4 = π 3 S = \frac{4}{3}\frac{\pi}{4} = \frac{\pi}{3}

Lastly, we have A=1 and B=3, so A + B = 4 A+B = \boxed{4} .

@Gian Sanjaya Do you also notice that:

S = i = 0 ( 1 ) i 6 i + 1 + i = 0 ( 1 ) i 6 i + 5 S = \sum_{i=0}^\infty \dfrac{(-1)^i}{6i+1} + \sum_{i=0}^\infty \dfrac{(-1)^i}{6i+5}

Can you find the individual summations of:

  • i = 0 ( 1 ) i 6 i + 1 = ? \displaystyle \sum_{i=0}^\infty \dfrac{(-1)^i}{6i+1} = \ ?

and

  • i = 0 ( 1 ) i 6 i + 5 = ? \displaystyle \sum_{i=0}^\infty \dfrac{(-1)^i}{6i+5} = \ ?

Satyajit Mohanty - 5 years, 8 months ago

Log in to reply

I quite noticed that but I preferred what I've done XD.

Edit: I can't find both the summation O_O so I need someone else to post the second solution.

Gian Sanjaya - 5 years, 8 months ago

1 6 Φ ( 1 , 1 , 1 / 6 ) \displaystyle \frac{1}{6} \Phi(-1,1,1/6)

1 6 Φ ( 1 , 1 , 5 / 6 ) \displaystyle \frac{1}{6} \Phi(-1,1,5/6)

Kartik Sharma - 5 years, 8 months ago

Log in to reply

Exact values :P ??

Satyajit Mohanty - 5 years, 8 months ago

Log in to reply

@Satyajit Mohanty W|A says it's

1 6 ( π 2 3 coth 1 ( 3 ) ) \displaystyle \frac{1}{6}(\pi - 2 \sqrt{3} {\coth}^{-1}(\sqrt{3}))

1 6 ( π + 2 3 coth 1 ( 3 ) ) \displaystyle \frac{1}{6}(\pi + 2 \sqrt{3} {\coth}^{-1}(\sqrt{3}))

which now makes me feel more stupid. It has to do with the c o t h 1 ( x ) {coth}^{-1}(x) and related series which I have never learnt so yeah/

The answer I first gave (in Lerch Phi notation) was a quick answer and a long answer would be using integration most probably which I don't have time to do. But that's easy I know.

Kartik Sharma - 5 years, 8 months ago

Translation please.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh Lerch Phi - a short, quick answer I guess.

Kartik Sharma - 5 years, 8 months ago

Again a totally bullshit problem

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...