∫ 0 1 ∫ 0 2 ∫ 0 3 ( x ln ( x y z ) ) d x d y d z
If the expression above equals to a ln ( b ) − c for integers a , b , c with b square free, find the value of a b c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow.I was expecting some people to integrate with parts but brute force.Well done!!!
Log in to reply
Thanks friend ! :)
Log in to reply
By the way its l o g e ,not l o g 1 0
Log in to reply
@Timothy Wan – by default lo g Means natural logarithm
Problem Loading...
Note Loading...
Set Loading...
Since all the limits are constant and independent,therefore we can separately integrate them. Integral can be rewrite in the form of :
∫ 0 1 ∫ 0 2 ∫ 0 3 x lo g ( x ) + x lo g ( y ) + x lo g ( z ) d x d y d z
∫ 0 1 ∫ 0 2 4 9 ( lo g ( 9 ) − 1 ) + 2 9 lo g ( y ) + 2 9 lo g ( z ) d y d z
∫ 0 1 2 9 ( lo g ( 9 ) − 1 ) + 2 9 ( lo g ( 4 ) − 2 ) + 9 lo g ( z ) d z
2 9 ( lo g ( 9 ) − 1 ) + 2 9 ( lo g ( 4 ) − 2 ) − 9
2 9 ( lo g ( 3 6 ) − 5 )
9 lo g ( 6 ) − 2 4 5
a b c = 1 2 1 5